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Transforming Programs and Tests in Tandem for Fault
Localization
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Localizing failure-inducing code is essential for software debugging. Manual fault localization can be quite
tedious, error-prone, and time-consuming. Therefore, a huge body of research e�orts have been dedicated to
automated fault localization. Spectrum-based fault localization, the most intensively studied fault localization
approach based on test execution information, may have limited e�ectiveness, since a code element executed
by a failed tests may not necessarily have impact on the test outcome and cause the test failure. To bridge the
gap, mutation-based fault localization has been proposed to transform the programs under test to check the
impact of each code element for better fault localization. However, there are limited studies on the e�ectiveness
of mutation-based fault localization on su�cient number of real bugs. In this paper, we perform an extensive
study to compare mutation-based fault localization techniques with various state-of-the-art spectrum-based
fault localization techniques on 357 real bugs from the Defects4J benchmark suite. The study results �rstly
demonstrate the e�ectiveness of mutation-based fault localization, as well as revealing a number of guidelines
for further improving mutation-based fault localization. Based on the learnt guidelines, we further transform
test outputs/messages and test code to obtain various mutation information. Then, we propose TraPT, an
automated Learning-to-Rank technique to fully explore the obtained mutation information for e�ective fault
localization. The experimental results show that TraPT localizes 65.12% and 94.52% more bugs within Top-1
than state-of-the-art mutation and spectrum based techniques when using the default setting of LIBSVM.
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1 INTRODUCTION
In the software development, fault localization denotes the process of localizing the potential faulty
code locations to help further �x the corresponding software faults. Due to the huge code volume
in modern programs, fault localization is a time-consuming and error-prone phase. As a result,
automated fault localization techniques have been widely studied in recent years [Abreu et al. 2007;
Artzi et al. 2010; B Le et al. 2016; Fey et al. 2008; Griesmayer et al. 2007; Papadakis and Le Traon
2014; Xuan and Monperrus 2014]. The basic idea of fault localization is to rank code elements
(e.g., program methods or statements) automatically according to the descending order of their
suspiciousness values (i.e, probability to be faulty) to assist developers in debugging.
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One of the most intensively studied fault localization methodologies is spectrum-based fault
localization (also known as coverage-based fault localization), which uses the coverage information
of failed/passed tests to measure the suspiciousness values of code elements [Abreu et al. 2007;
Jones and Harrold 2005; Naish et al. 2011; Santelices et al. 2009; Wong et al. 2007]. The basic idea of
spectrum-based fault localization is that the code elements that are primarily executed by failed tests
are more suspicious than the elements that are primarily executed by passed tests. To date, various
suspiciousness computation formulae have been utilized for spectrum-based fault localization, e.g.,
Tarantula [Jones and Harrold 2005], Ochiai [Abreu et al. 2006], and Jaccard [Abreu et al. 2007].
After the fault localization process, developers can manually go through the ranked list to �nd out
the locations of program faults e�ciently.
Although intensively studied, spectrum-based fault localization may have limited support for

real-world debugging practice according to recent studies [Parnin and Orso 2011]. One key reason
is that elements executed by the failed tests do not necessarily impact the program behavior
and contribute to the test failure while faulty elements may also be executed by passed tests
coincidentally. To bridge the gap between coverage and impact information, researchers proposed
mutation-based fault localization [Moon et al. 2014; Papadakis and Le Traon 2012, 2015; Zhang et al.
2013], which transforms program source code based on mutation testing to check the impact of
each code element on the test outcomes. Mutation testing was originally proposed to evaluate test
e�ectiveness by injecting arti�cial faults into the program under test [DeMillo et al. 1978; Hamlet
1977; Jia and Harman 2011]. In mutation-based fault localization, mutation testing is used to inject
changes to each code element to check its impact on the test outcomes. The �rst mutation-based
fault localization technique is called Metallaxis [Papadakis and Le Traon 2012, 2015]. The basic
idea of Metallaxis is that if one mutant incurs di�erent failure outputs/messages for failed tests, the
corresponding code element of this mutant may have high impact on failed tests, and may be the
cause of the test failures. Metallaxis directly applies the existing spectrum-based formulae to the
impact information to compute code element suspiciousness. Another representative mutation-
based fault localization is called MUSE [Moon et al. 2014]. The basic heuristic of MUSE is that
mutating faulty elements may mask the fault and make some failed tests pass, while mutating
correct elements may lead to more faulty elements besides existing faulty elements, making more
tests fail. Based on this insight, MUSE uses a newly designed formula for localizing faulty code
elements.
While Metallaxis and MUSE have been demonstrated to outperform the traditional spectrum-

based fault localization techniques [Moon et al. 2014; Papadakis and Le Traon 2015], the existing
studies usually use seeded bugs or a small number of real bugs. For example, the real bugs used in
the Metallaxis (38 real bugs) and MUSE (3 real bugs) work all come from Space, a C program with
less than 10K lines of code [Moon et al. 2014; Papadakis and Le Traon 2015]. Therefore, there lack
extensive studies investigating the e�ectiveness of mutation-based fault localization on a su�cient
number of real bugs from modern real-world projects. In this paper, we perform an extensive
study of the two representative mutation-based fault localization techniques (Metallaxis [Papadakis
and Le Traon 2015] and MUSE [Moon et al. 2014]), on 357 real bugs from the modern Defects4J
benchmark (with subjects ranging from 22K to 90K lines of code). Our study results �rstly con�rm
that mutation-based fault localization techniques can signi�cantly outperform state-of-the-art
spectrum-based techniques for the majority of the studied real bugs, e.g., the MAR (Mean Average
Ranking of bugs) is 44.99 for the spectrum-based Ochiai, but only 15.28 for Metallaxis with the
Ochiai formula. Meanwhile, the study also reveals various limitations of mutation-based fault
localization, e.g., mutation-based fault localization may be ine�ective when too few or too many
mutants can impact the outputs/messages of failed tests (Section 5.1).
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Based on our study �ndings, besides transforming source code via mutation testing, we propose
to also transform test messages/outputs and test code to capture detailed mutation information
for more e�ective mutation-based fault localization. First, we transform the test message/output
data to obtain di�erent types of failure output/message information. In previous mutation-based
techniques, MUSE only considers pass/fail information of tests, while Metallaxis only considers
the detailed changed failure outputs/messages with stack traces. Actually, there are other di�erent
intermediate types of failure messages (such as simply printing exception types, or exception types
with messages), based on which a mutant may have di�erent sets of impacted tests (e.g., a mutant
may change a test’s exception message but not its exception type). Based on this intuition, we
record di�erent types of test failure information to investigate their impacts on mutation-based
fault localization. Second, we further transform the test code to record the detailed execution result
for each assertion within each test. The intuition of this extension is that in modern programming
languages and testing paradigms (e.g., Java programs with JUnit tests), each test may consist of
multiple assertions, while only one outcome is reported for all assertions at the traditional test
level. Furthermore, if one assertion fails, the test execution will be aborted and the remaining
assertions will not be executed. Therefore, we perform test code transformation to record the
execution outcomes of all assertions, and utilize the detailed impact of each program element on
each assertion to further improve mutation-based fault localization.
We then further propose TraPT (Transforming Programs and Tests in tandem for fault local-

ization) to combine the strengths of various captured mutation information via Learning-to-Rank
techniques [Liu 2009]. For each program element, we compute a set of di�erent suspiciousness val-
ues based on mutation-based fault localization using di�erent mutation information (e.g., obtained
via di�erent failure message types and levels) as well as traditional spectrum-based techniques.
Then, such suspiciousness values can be treated as the features/attributes to predict whether each
code element is buggy or not based on historical bug data. Our experimental results demonstrate
that TraPT (with the default setting of LIBSVM [Chang and Lin 2011]) incorporating various
failure message types can localize 94.52% and 65.12% more bugs within Top-1 than state-of-the-art
spectrum and mutation based techniques, respectively. Also, including assertion-level mutation
information can further improve the fault localization results of TraPT by 14.77% in localizing
Top-1 bugs. Finally, our experimental results also show that historical bug data from other projects
can help boost the fault localization results even more. In summary, the paper makes the following
contributions:

• Study.We present an extensive study on 357 real bugs from Defects4J to evaluate state-of-
the-art mutation-based fault localization techniques, MUSE and Metallaxis. The study results
�rstly con�rm the e�ectiveness of mutation-based fault localization on real bugs, and also
reveal various guidelines for further improving mutation-based fault localization.
• Extensions. Based on the guidelines learnt from our study, we propose two extensions to
further transform test outputs/messages and test code to obtain useful mutation information
for better fault localization. The experimental results show that di�erent failure message types
(obtained via test output/message transformation) and di�erent mutation levels (obtained via
test code transformation) can all potentially help with fault localization.
• Learning-to-Rank Technique. We further propose TraPT, a Learning-to-Rank technique
to incorporate various mutation information obtained from our extensions to help with better
fault localization. The experimental results show that TraPT can greatly outperform existing
state-of-the-art spectrum-based and mutation-based techniques.
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2 BACKGROUND
In this section, we introduce the preliminaries on spectrum-based fault localization (Section 2.1)
and mutation-based fault localization (Section 2.2). Finally, we also illustrate the basic ideas of
spectrum-based and mutation-based fault localization using a simple example program (Section 2.3).

2.1 Spectrum-based Fault Localization
Spectrum-based fault localization [Abreu et al. 2006, 2007; Jones and Harrold 2005; Liblit et al. 2005;
Naish et al. 2011; Santelices et al. 2009; Wong et al. 2007] is one of the most intensively studied
approaches for fault localization. This approach takes the coverage information of all tests in the
test suite (including passed and failed ones) as input, and applies various formulae (e.g., based on
statistical analysis or other heuristics) to compute the suspiciousness value of each code element
(e.g., statement or method). The insight is that code elements primarily executed by failed tests are
more suspicious than the ones primarily executed by passed tests. The output of the approach would
be a ranked list of code elements for manual inspection. To date, a number of spectrum-based fault
localization techniques have been proposed, e.g., Tarantula [Jones and Harrold 2005], Ochiai [Abreu
et al. 2006], Jaccard [Abreu et al. 2007], SBI [Liblit et al. 2005], and so on. Almost all the proposed
techniques rely on the following information: (1) the set of all failed/passed tests, i.e., Tf /Tp , (2) the
set of failed/passed tests executing element e , i.e., Tf (e)/Tp (e), and (3) the set of failed/passed tests
that do not execute element e , i.e., Tf (ē)/Tp (ē). For example, the suspiciousness value of element
e based on the SBI formula will be calculated as Susp(e) = |Tf (e ) |

|Tf (e ) |+ |Tp (e ) | . Then, developers can go
through the ranked list to manually identify the actual faulty elements e�ciently. The higher the
faulty elements get ranked, the less e�ort the developers may spend in identifying the faults.

2.2 Mutation-based Fault Localization
One issue of spectrum-based fault localization is that even though some code elements can be
covered by failed tests, theymay not have any impact on the program’s correctness and contribute to
the failures. To improve spectrum-based fault localization, mutation-based fault localization [Moon
et al. 2014; Papadakis and Le Traon 2012, 2014, 2015] is proposed to mutate the subject programs to
check the impact of each code element on the test outcomes. Metallaxis [Papadakis and Le Traon
2015] and MUSE [Moon et al. 2014] are two representative mutation-based fault localization
techniques. The two techniques both transform the program source code based on mutation testing
and then analyze the impact of each mutant on tests.
Metallaxis.Metallaxis makes the assumption that mutants of same program element frequently
exhibit similar behaviors and mutants of diverse program elements exhibit di�erent behaviors.
Since a fault can also be viewed as a mutant, it may be similar to other mutants of same element
and can be located by examining these mutants based on the above observation. Metallaxis treats
the mutants that can impact the detailed test outputs/messages as being able to impact the tests
(Note that for a passing test, any mutant causing it to fail can be treated as changing the test failure
message from NULL to non-NULL, thus impacting the tests). In this way, mutants impacting failed
tests indicate that their corresponding code elements may have caused the test failures, whereas
mutants impacting passed tests indicate that their corresponding code elements may not be faulty
(otherwise the passed tests would have failed). Then Metallaxis extended spectrum-based fault
localization formulae, treating all mutants impacting the tests as covered elements while the others
as uncovered elements, to calculate the suspiciousness value of each mutant. At last, the maximum
suspiciousness value of mutants of a corresponding code element is returned as the suspiciousness
value of the code element. Assume that the SBI formula is applied to Metallaxis, the suspiciousness
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of element e can be calculated as:

max
m2M (e )

(
|T (m)
f (e)|

|T (m)
f (e)|+|T (m)

p (e)|
) (1)

In the formula,M(e) denotes the set of all mutants on element e , |T (m)
f (e)| denotes the number of

failed tests that have been impacted by mutantm, |T (m)
p (e)| denotes the number of passed tests that

have been impacted by mutantm.
MUSE. The basic insight of MUSE is two-fold: (1) mutating faulty elements may cause more failed
test cases to pass than mutating correct elements; (2) mutating correct elements may cause more
passed test cases to fail than mutating faulty elements. The reason is that mutating faulty elements
may mask the fault and make some failed tests pass, while mutating correct elements may lead to
more faulty elements besides existing faulty elements, making more tests fail. Therefore, based
on this insight, MUSE computes the suspiciousness value of each program element e , i.e., Susp(e),
based on the following formula:

1
|M(e)|

X

m2M (e )
(
|T (m)
f (e)|
|Tf |

� � ⇤
|T (m)
p (e)|
|Tp |

) (2)

In the formula, M(e) is the set of all mutants on element e , Tp/Tf denotes the set of originally
passed/failed tests,T (m)

f (e) denotes the set of originally failed tests that pass with mutantm inserted,

andT (m)
p (e) denotes the set of originally passed tests that fail with mutantm inserted. Thus,

|T (m)
f (e ) |
|Tf |

is the proportion of failed tests that are changed into passed after mutantm mutates element e to

all the originally failed tests, re�ecting the �rst insight of MUSE. |T
(m)
p (e ) |
|Tp | is the proportion of passed

tests that are changed into failed after mutantm mutates e to all originally passed tests, re�ecting
the second insight of MUSE. The weight � is used to balance the above two proportions, and is
calculated as f 2p

|Tf | ⇤
|Tp |
p2f , where f 2p denotes the total number of failed tests changed into passed

while p2f denotes the total number of passed tests changed into failed during mutation testing.

2.3 Example

Table 1. Spectrum-based fault localization
Coverage

Statements TC1 TC2 TC3 |Tf (e)| |Tp (e)| SBI Rank
BankAcnt(String a){

s1 account=a; X X X 2 1 0.67 8
s2 saving=100; X X X 2 1 0.67 8
s3 bank="ABank";} X X X 2 1 0.67 8

double getBalance(){
s4 return saving; } X X X 2 1 0.67 8

double withdraw(double v){
s5 if(saving>=v) { X X 2 0 1.00 3
s6 saving = saving-v; X X 2 0 1.00 3
s7 return v; X X 2 0 1.00 3

}else{
s8 return 0;} } 0 0 0.00 9

void deposit (double v){
s9 saving = saving-v; } X X X 2 1 0.67 8

F P F

In this section, we use an exam-
ple program shown in Figure 1 to
illustrate existing spectrum-based
and mutation-based fault localiza-
tion techniques (e.g., SBI [Liblit et al.
2005], MUSE [Moon et al. 2014] and
Metallaxis [Papadakis and Le Traon
2015]). In the example program, the
left half presents its source code for
dealing with bank account operations
such as getBalance, withdraw,
and deposit, while the right half
presents its corresponding test suites
consisting of three JUnit tests. Note that in the code, there is a fault in the depositmethod (marked
with underline), where saving=saving-v should be saving=saving+v. Due to this fault, tests
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public class BankAcnt{
private static String bank;
public String account;
private double saving;
public BankAcnt(String a){
account=a;
saving=100;
bank=''ABank'';

}
public double getBalance(){
return saving;

}
public double withdraw (double v) {
if(saving>=v) {
saving = saving-v;
return v;
}else{
return 0;
}

}
public void deposit (double v){

saving = saving-v;// FAULT

}
}

public class TestBankAcnt{
@Test
public void TC1() {
BankAcnt acnt=new BankAcnt(``acnt1'');
double old_balance=acnt.getBalance();
double amnt=acnt.withdraw(20);
acnt.deposit(amnt);
assertEquals(old_balance, acnt.getBalance(),0.01);
acnt.withdraw(0);
assertTrue(acnt.getBalance()>0); }

@Test
public void TC2() {
BankAcnt acnt=new BankAcnt(``acnt1'');
acnt.deposit(0);
assertEquals(100,acnt.getBalance(),0.01); }
@Test
public void TC3() {
BankAcnt acnt1=new BankAcnt(``acnt1'');
BankAcnt acnt2=new BankAcnt(``acnt2'');
double amount=acnt1.withdraw(80);
assertEquals(20,acnt1.getBalance(),0.01);
acnt2.deposit(amount);
assertEquals(180,acnt2.getBalance(),0.01); }

}

Fig. 1. Example code and corresponding test suite.

TC1 and TC3 fail while only TC2 passes. Next, we will show how di�erent fault localization tech-
niques perform in localizing the fault given the test failure information.
SBI. Traditional spectrum-based fault localization techniques [Abreu et al. 2006, 2007; Jones and
Harrold 2005; Liblit et al. 2005; Naish et al. 2011; Santelices et al. 2009; Wong et al. 2007] have
been intensively studied. They mainly utilize the coverage information and test pass/fail results to
determine the suspiciousness of each code element. The basic insight is that code elements that
are primarily executed by failed tests rather than passed tests have potentially higher probability
of being faulty. Table 1 presents the results of traditional SBI technique [Liblit et al. 2005] in
localizing the fault in Figure 1. In the table, Columns 1-2 present the executable statements under
consideration, with the faulty statement marked in red. Column 3 presents the coverage information
of each test (X denotes that the corresponding element is covered by the corresponding test), with
the �nal row presenting the test outcomes (F for failed while P for passed). Column 4 presents the
number of failed/passed tests that execute each code element, i.e., |Tf (e)|/|Tp (e)| for each element e .
Then, based on the SBI formula (SuspSBI (e) =

|Tf (e ) |
|Tf (e ) |+ |Tp (e ) | ), Column 5 presents the suspiciousness

value and rank1 for each code element. Unfortunately, the technique computes the faulty element
(i.e., s9) as the least suspicious one among the executed statements. The reason is that although
not all executed statements contribute to test failures, they are all executed by the failed tests
coincidentally, while the faulty statement s9 is also executed by the passed test without triggering
any failure.
Metallaxis. To achieve more precise fault localization, mutation-based fault localization (e.g.,
Metallaxis [Papadakis and Le Traon 2015] and MUSE [Moon et al. 2014]) mutates each code element
to check its impact on the test outcomes. Table 2 presents the result using Metallaxis and Table 3
presents the result using MUSE. Column 3 in both tables presents the mutants that Metallaxis
and MUSE use to check the impact of each code element. For the sake of simplicity, we generate
at most two mutants for each statement, resulting in a total of 11 mutants. In Table 2, Column 4

1For the tied elements, we show the lowest applicable ranking.
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Table 2. Fault localization using Metallaxis
Impacts on Tests

Statements Mutants TC1 TC2 TC3 |T (m)
f (e)| |T (m)

p (e)| Susp Rank

BankAcnt(String a){
s1 account=a; m1:account="Hello" 0 0 0.00 9
s2 saving=100; m2:saving=50 X X X 2 1 0.67 6
s3 bank="ABank";} m3:bank="A" 0 0 0.00 9

double getBalance(){
s4 return saving; } m4:return 0 X X X 2 1 0.67 6

double withdraw(double v){

s5 if(saving>=v) {
m5:if(saving<v) { X X 2 0 1.00 4
m6:if(saving==v){ X X 2 0 1.00

s6 saving = saving-v; m7:saving=saving+v X X 2 0 1.00 4
s7 return v; m8:return 0; X X 2 0 1.00 4

}else{
s8 return 0;} } m9:return v 0 0 0.00 9

void deposit (double v){
m10:saving=saving+v X X 2 0 1.00

s9 saving = saving-v; }
m11:saving=saving/v X X X 2 1 0.67 4

F P F

Table 3. Fault localization using MUSE
Impacts on Tests

Statements Mutants TC1 TC2 TC3 |T (m)
f (e)| |T (m)

p (e)| Susp Rank

BankAcnt(String a){
s1 account=a; m1:account="Hello" 0 0 0 7
s2 saving=100; m2:saving=50 P!F 0 1 -0.83 9
s3 bank="ABank";} m3:bank="A" 0 0 0 7

double getBalance(){
s4 return saving; } m4:return 0 P!F 0 1 -0.83 9

double withdraw (double v) {

s5 if(saving>=v) {
m5:if(saving<v) { F!P 1 0 0.5 2
m6:if(saving==v){ F!P 1 0

s6 saving = saving-v; m7:saving=saving+v F!P 1 0 0.5 2
s7 return v; m8:return 0; 0 0 0 7

}else{
s8 return 0;} } m9:return v 0 0 0 7

void deposit (double v){
m10:saving=saving+v F!P F!P 2 0

s9 saving = saving-v; }
m11:saving=saving/v P!F 0 1 0.085 3

F P F

presents the mutants impacting the three tests. We use “X” to denote that the mutant impacts the
corresponding test, i.e., the test failure messages changed after mutation. Then we can apply the
SBI formula to Metallaxis to calculate the suspiciousness values of all mutants on each element and
assign the maximum value to corresponding element. Based on Metallaxis, the suspiciousness value
of statement s9 can be calculated as 1.00 since mutant m10 has highest value among mutants m10
and m11 of this statement. Finally, according to suspiciousness values of all statements, statement
s9 can be ranked 4th by Metallaxis, outperforming the corresponding traditional spectrum-based
technique.
MUSE. In Table 3 , Column 4 presents the test outcome changes for each test on each mutant.
“F!P” denotes that an originally failed test now passes on the mutant, while “P!F” denotes that
an originally passed test now fails on the mutant. Note that the blank cells denote the cases where
the test outcomes do not change before and after the mutation. In total, there are 5 tests changed
from failed to passed, i.e., f 2p =5. and 3 tests changed from passed to failed, i.e., p2f =3. Therefore,
MUSE calculates � as f 2p

|Tf | ⇤
|Tp |
p2f = 5/2 ⇤ 1/3 = 0.83. Using this � value, suspiciousness values

of di�erent statements can be calculated based on Equation 2. For example, the suspiciousness
value of statement s9 is 1/2 ⇤ ((2/2 � 0.83 ⇤ 0) + (0 � 0.83 ⇤ 1/1)) = 0.085, where |T (m10)

f (s9)|= 2 and
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java.lang.NumberFormatException: For input string: "80000000"
at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
at java.lang.Integer.parseInt(Integer.java:495)
at java.lang.Integer.valueOf(Integer.java:556)
at java.lang.Integer.decode(Integer.java:984)
at org.apache.commons.lang3.math.NumberUtils.createInteger(NumberUtils.java:684)
at org.apache.commons.lang3.math.NumberUtils.createNumber(NumberUtils.java:474)
at org.apache.commons.lang3.math.NumberUtilsTest.TestLang747(NumberUtilsTest.java:256)

Fig. 2. JUnit failure message example

|T (m10)
p (s9)|= 0 for mutant m10, while |T (m11)

f (s9)|= 0 and |T (m11)
p (s9)|= 1 for mutant m11. Based on

the impacts of each code element’s mutant(s) on each test, MUSE ranks s5 and s6 above the faulty
statement s9 since their mutants only change failed tests to passed ones while s9’s mutant may
change passed tests into failed ones. However, the rank of s9 indicates that MUSE still outperforms
the traditional SBI technique.

3 APPROACH
While traditional mutation-based fault localization simply transforms program source code via
mutation, in this section, we introduce howwe further transform test outputs/messages and test code
to achieve more e�ective fault localization. Section 3.1 presents why and how we record di�erent
types of test failure outputs/messages in order to investigate their impacts on fault localization.
More speci�cally, we transform the test output/message information to distill 4 di�erent types of
test failure messages. Section 3.2 further investigates di�erent mutation-based fault localization
techniques not only at the test level but also at the assertion level. More speci�cally, at the assertion
level, we further transform the test code to capture the detailed execution information of each
assertion in each test. Then the impact information of each mutant on each assertion can be
utilized to compute more precise fault localization information (i.e., simply using the existing
test-level techniques by treating each assertion as a test). Finally, we investigate how to improve
mutation-based fault localization by incorporating all the above traced mutation information via
the Learning-to-Rank algorithm [Liu 2009] (Section 3.3).

3.1 Test Output/Message Transformation
When a test fails, certain failure output or message will be thrown. The most popular one is the out-
come of this test, i.e., whether this test passes or fails. For a failed test, however, the reasons that cause
it to fail may be di�erent even though this test is always marked as “failed” in di�erent failure cases.
First, a test can fail due to di�erent types of exceptions, eg. ArrayIndexOutOfBoundsException
(indicating that an array has been accessed with an illegal index) or NullPointerException
(indicating that the accessed object is NULL) in Java. Second, although the cause of failure may be
the same type of exception, the detailed message of this exception may not be same. For example,
the failure messages of ArrayIndexOutOfBoundsException may be di�erent when accessing
the array with di�erent illegal indexes. Besides the exception information above, the detailed stack
trace2 information also matters for a test failure. The test failing with the same exception type and
message may not have exactly the same stack trace information due to di�erent calling contexts. To
illustrate, Figure 2 shows the complete JUnit test failure information for bug Lang-1 of the Defects4J
benchmark [Just et al. 2014]. In this example, test TestLang747 is failing since an exception
has been thrown. The type of the exception is NumberFormatException and the corresponding
exception message is “For input string:80000000”, indicating that incorrect number format

2A stack trace, which is also called stack backtrace, is a list of the method calls on the current stack when an exception is
thrown during the execution of a program.
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of string 80000000 incurs the failure. The detailed stack trace information is further printed after
the exception message to help with fault diagnosis.
Metallaxis [Papadakis and Le Traon 2015] evaluates the e�ectiveness of fault localization by

investigating changes of all available failure messages, but did not consider the impact of di�erent
types of failure messages. MUSE [Moon et al. 2014] uses the changes of pass/fail outcome of each
test for fault localization, but ignores more detailed failure information. Therefore, Metallaxis may
be too sensitive to test failure message changes while MUSEmay be too insensitive. In this paper, we
further extend both Metallaxis and MUSE by recording 4 di�erent types of failure outputs/messages
for fault localization as following: (1) Type1: pass/fail information, (2) Type2: exception type
information, (3) Type3: exception type and message, and (4) Type4 : exception type, message and
the full stack trace of the exception. Intuitively, Type4 provides more detailed information than
other types so that it may be most e�ective for fault localization. However, comparing Table 2 with
Table 3 in Section 2.3, Metallaxis with more detailed failure messages (i.e., Type4 ) may actually be
inferior to MUSE with less detailed failure message (i.e., Type1). The reason is that Metallaxis has 6
statements (3 for MUSE) with mutants impacting failed tests due to the sensitive failure messages,
making many statements share similar suspiciousness values with the actual buggy statement.
Therefore, we transform the test outputs/messages to consider all the 4 di�erent types of failure
messages to investigate their e�ectiveness.

3.2 Test Code Transformation
Various programming languages and unit testing frameworks support assertions to verify the
correctness of program execution, e.g., the JUnit testing framework3 for Java. For one test execution,
if any assertion of the test is not satis�ed, the test will throw an assertion exception and abort
the test execution. For example, in Java, class java.lang.AssertionError is used to indicate
assertion violation exceptions. If an assertion fails, an exception of type AssertionError will be
thrown from the assertion statement without being caught, incurring early execution termination.
In this case, the following assertions are not executed and the detailed outcome of each assertion
will not be available. In order to investigate the e�ectiveness of mutation-based fault localization at
the assertion level, we further propose to transform the test code to catch all the assertion violation
exceptions that may be thrown to force the test code to verify following assertion outcomes in
case of early assertion violation. In addition, we also transform the test code to record the detailed
value(s) checked by each assertion to detect any assertion-level impact information. For example, if
any mutant causes an assertion to check a di�erent value, we treat that mutant as impacting the
assertion.
Note that after catching all the assertion exceptions, there still may be faults that are detected

by other types of exceptions rather than assertions, e.g., NullPointerException. Therefore,
we also record the di�erent types of failure messages of the transformed tests automatically via
implementing a runtime listener for test outcome events, since the transformed tests may fail due
to other exceptions than assertions. For the uniformness and conciseness, we actually treat this
kind of exceptions of the transformed tests as a default assertion (i.e., a0). That is, for any test with
n assertions, we will record the checked value of each assertion as well as the transformed test
outcome (default assertion), resulting in n + 1 assertion outcomes that can capture the detailed
test execution information. Note that for the default assertion, we also have four di�erent types of
failure messages to con�gure (shown in Section 3.1). In the assertion-level mutation-based fault
localization, the prior mutation-based fault localization techniques can be directly applied, and the
only di�erence is that now each assertion is treated as a test for fault localization.

3http://junit.org/junit4/
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Table 4. Fault localization using MUSE on assertion-level
Impacts on Assertions

Statements Mutants TC1-a1 TC1-a2 TC2-a1 TC3-a1 TC3-a2 |T (m)
f (e)| |T (m)

p (e)| Susp Rank

BankAcnt(String a){
s1 account=a; m1:account="Hello" 0 0 0 7
s2 saving=100; m2:saving=50 P!F P!F 0 2 -0.67 9
s3 bank="ABank";} m3:bank="A" 0 0 0 7

double getBalance(){
s4 return saving; } m4:return 0 F!P P!F P!F P!F 1 3 -0.5 8

double withdraw (double v) {

s5 if(saving>=v) {
m5:if(saving<v) { F!P P!F 1 1 0.17 2
m6:if(saving==v){ F!P P!F 1 1

s6 saving = saving-v; m7:saving=saving+v F!P P!F 1 1 0.083 3
s7 return v; m8:return 0; 0 0 0 7

}else{
s8 return 0;} } m9:return v 0 0 0 7

void deposit (double v){
m10:saving=saving+v F!P F!P 2 0

s9 saving = saving-v; }
m11:saving=saving/v P!F 0 1 0.33 1

F P P P F

To illustrate how assertion-level mutation information improves fault localization, we split the 3
original tests in Figure 1 based on the number of assertions that they have. Shown in Table 4, the
original TC1 result is split into two assertion-level results: TC1-a1 and TC1-a2 (Note that for the
ease of illustration, we do not show the default assertions). Then we apply MUSE to the assertion-
level results to perform fault localization (the result is similar for Metallaxis). The result shows that
MUSE at the assertion level can rank the buggy statement as 1st due to detailed assertion-level
information, outperforming the traditional mutation-based techniques.

3.3 Learning-to-Rank Fault Localization
Learning-to-Rank is a supervised machine learning technique for solving ranking problems in the
�eld of information retrieval [Liu 2009]. There are two phases of Learning-to-Rank : (1) the learning
phase and (2) the ranking phase. The training data for Learning-to-Rank consists of queries and
documents and their ground-truth relevance degree. Then, in the learning phase, Learning-to-Rank
takes the speci�c attributes of documents and queries as di�erent features, e.g., cosine similarity
and proximity value. A ranking model can then be learned in learning phase to predict the relevance
labels for new queries and documents with computed features. The ranking model is usually an
optimal combination of weights for di�erent features. In the ranking phase, test data including new
queries and documents are passed into the ranking model built in the learning phase. Finally, the
ranking model can return a ranked list of documents for the given queries for further analysis.

There are three major categories of approaches in Learning-to-Rank : (1) pointwise approaches,
(2) pairwise approaches, and (3) listwise approaches. In the pointwise approaches, for a given query,
each document in the training data has its own label. In the pairwise approaches, each pair of two
documents will be computed a label based to their ordering for the given query. In the listwise
approaches, the order of a list of documents will be considered for prediction. Note that in the
fault localization problem, we only care about the capability of distinguishing faulty elements from
correct ones. Besides ranking faulty elements over correct ones, there is no further relationships
among faulty or correct elements. Therefore, the pairwise approaches are the most suitable for
Learning-to-Rank fault localization.
Recently, Learning-to-Rank has been applied to improve the e�ectiveness of spectrum-based

fault localization [B Le et al. 2016; Xuan and Monperrus 2014]. In this work, we further apply
Learning-to-Rank to incorporate various mutation information to further improve fault localization.
The basic idea of Learning-to-Rank for fault localization is to combine various di�erent fault
localization techniques (as di�erent features) by learning a weight for each feature via machine
learning. For each code element e , there can be n suspiciousness values computed by n studied fault
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localization techniques, including both spectrum-based techniques and mutation-based techniques
based on di�erent mutation information (shown in Section 3.1 and Section 3.2). We assume that
each suspiciousness value of e is Suspi (e) (i = 1, 2, ...n). According to certain Learning-to-Rank
algorithm, the weight for each feature of e can be learned asWei�hti (e) (i = 1, 2, ...n). Then new
combined suspiciousness value of element e can be calculated as:

SuspComb (e) =
X

i 21,2, ..n
Wei�hti (e) ⇤ Suspi (e) (3)

Then the code elements can be ranked according to new suspiciousness values. Assume e+ and e�
denote any pair of faulty and correct code elements, the loss function can be de�ned as the number
of incorrectly ranked pairs:

Loss =
X

he+,e�i
k SuspComb (e+)  SuspComb (e�) k (4)

In the learning phase, the training set consists of code elements from historical faulty program-
s/versions which include at least one failed test. Each element has several features that are the sus-
piciousness values calculated by various spectrum-based and muation-based fault localization tech-
niques.

Table 5. Sample of traning data
Label PID Susp1 Susp2 Susp3 ...

Element1 �

(1,1) 1 x

(1,1)
1 x

(1,1)
2 x

(1,1)
3 ...

Element2 �

(1,2) 1 x

(1,2)
1 x

(1,2)
2 x

(1,2)
3 ...

Element1 �

(2,1) 2 x

(2,1)
1 x

(2,1)
2 x

(2,1)
3 ...

Element2 �

(2,2) 2 x

(2,2)
1 x

(2,2)
2 x

(2,2)
3 ...

... ... ... ... ... ... ...

Table 5 presents a sample of training data. In
the table, Column 1 presents di�erent code
elements. Column 2 (“Label”) represents if
the element is faulty or not. It corresponds to
the ground-truth reference label in informa-
tion retrieval. Column 3 (“PID”) represents
the ID of faulty program/version. In our
study, PID represents Bug ID of Defects4J.
It corresponds to the query in information

retrieval. For example, �(i, j ) = 1 means the jth element in ith program/version is faulty. Other
columns present element suspiciousness values computed by di�erent fault localization techniques.
For example, x (i, j )k presents the suspiciousness value of the jth element in ith program/version based
on the kth fault localization technique. In the learning phase, a ranking model including weights of
di�erent suspiciousness values can be built. Then the model is used to predict new suspiciousness
values of elements in test data in the ranking phase. Various pairwise Learning-to-Rank approaches
can be applied for fault localization, e.g., RankSVM [Lee and Lin 2014], RankBoost [Freund et al.
2003], RankNet [Burges et al. 2005], FRank [Tsai et al. 2007], and LambdaRank [Burges et al. 2006].

4 EXPERIMENTAL SETUP
In this paper, we investigate the following research questions:
• RQ1: How does mutation-based fault localization perform in localizing real bugs?
• RQ2: How do di�erent failure message types impact mutaton-based fault localization tech-
niques?
• RQ3: How does the assertion level information further impact mutaton-based fault localiza-
tion techniques?
• RQ4: How does the Learning-to-Rank fault localization incorporating various mutation
information perform in localizing real bugs?

In RQ1, we compare two mutation-based fault localization techniques (i.e., Metallaxis and MUSE)
against 34 widely used traditional spectrum-based fault localization formulae on real bugs. In RQ2,
we evaluate the e�ectiveness of Metallaxis and MUSE with 4 test failure message types. In RQ3, we
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compare the e�ectiveness of Metallaxis and MUSE at both the test and assertion levels. In RQ4, we
investigate the e�ectiveness of Learning-to-Rank fault localization with di�erent suspiciousness
values computed by di�erent techniques, including Metallaxis and MUSE with di�erent failure
message types at both the test and assertion levels, as well as traditional spectrum-based techniques.

4.1 Implementation and Tool Supports
We use the PIT mutation testing framework4 to apply mutation testing to the studied subjects since
PIT is the most robust and widely used mutation testing tool for Java projects [Denaro et al. 2015;
Lu et al. 2016; Možucha and Rossi 2016; Musco et al. 2016; Zhang et al. 2016]. We made three main
modi�cations to PIT (Version 1.1.5) to implement Metallaxis and MUSE: (1) following August et
al. [Shi et al. 2014], we force PIT to execute each mutant against the remaining tests even some
tests have killed the mutant since the original PIT aborts test execution for a mutant once it is
killed; (2) we enable PIT to apply mutation testing on programs with failed tests since the original
PIT aborts mutation testing if any of the original tests fails; (3) we enable PIT to further capture
detailed test outputs/messages for each mutant. In original PIT, the method onTestFailure() of
class ErrorListener is only used to record test pass/fail information. Besides the test pass/fail
information, we further modify PIT to capture the exception types, exception messages, and
stack traces by invoking methods getClass(), getMessage(), and getStackTrace() on the
captured java.lang.Throwable objects, respectively. To fully evaluate the potential of mutation-
based fault localization, we use all the 16 mutation operators of PIT as shown in Table 6. The
detailed explanation for each mutation operator can be found on PIT homepage.

Table 6. PIT mutation operators
ID Mutation Operator
M1 Constructor Call Mutator
M2 Increments Mutator
M3 Inline Constant Mutator
M4 Invert Negs Mutator
M5 Math Mutator
M6 Negate Conditionals Mutator
M7 Non-Void Method Call Mutator
M8 Remove Conditional Mutator
M9 Return Vals Mutator
M10 Void Method Call Mutator
M11 Remove Increments Mutator
M12 Member Variable Mutator
M13 Switch Mutator
M14 Argument Propagation Mutator
M15 Conditional Boundary Mutator
M16 Remove Switch Mutator

We further capture the detailed assertion-level information
for each mutant at the byte-code level using the ASM byte-
code manipulation framework5 to avoid modifying the test
source code. Furthermore, to avoid changing the physical test
byte-code on disk, we use Java Agent6 to apply on-the-�y
test byte-code transformation. Our on-the-�y instrumentation
captures all the invocations to the original JUnit assertion APIs,
and replaces them with the invocations to our own shadow
version of assertion APIs which record the detailed checked
values within each assertion and also catch thrown assertion
exceptions (shown in Section 3.2). Note that for arrays checked
by assertions, in order to capture the detailed changes for array
elements, we concatenate all the array element contents. For
the non-primitive objects checked by assertions, in order to
detect detailed changes to object �elds or transitive �elds, we
use the XStream library7 to serialize the entire object graph into XML strings. For each assertion
encountered during each mutant execution, capturing the detailed checked values can be extremely
space-consuming and time-consuming due to the extensive �le IO in case of large arrays or object
graphs. Therefore, we apply the Apache Commons Codec library8 to compute the CheckSum of
the checked value for each assertion. In this way, all the checked values uniformly have only
40-character CheckSum hash.

4http://pitest.org/
5http://asm.ow2.org/
6https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
7http://x-stream.github.io/
8https://commons.apache.org/proper/commons-codec/
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Table 7. Studied spectrum-Based fault Localization formulae
Tech Defn Tech Defn Tech Defn

Tarantula
|Tf (e )|
|Tf |

|Tf (e )|
|Tf |

+ |Tp (e )||Tp |
Ochiai |Tf (e ) |p

( |Tf (e ) |+ |Tp (e ) |) |Tf |
Jaccard |Tf (e ) |

|Tf |+ |Tp (e ) |

Ample | |Tf (e ) ||Tf | �
|Tp (e ) |
|Tp | | RussellRao |Tf (e ) |

|Tf |+ |Tp | Hamann |Tf (e ) |+ |Tp (ē ) |� |Tp (e ) |� |Tf (ē ) |
|Tf |+ |Tp |

S�rensenDice 2 |Tf (e ) |
2 |Tf (e ) |+ |Tp (e ) |+ |Tf (ē ) | Dice 2 |Tf (e ) |

|Tf |+ |Tp (e ) | Kulczynski1 |Tf (e ) |
|Tf (ē ) |+ |Tp (e ) |

Kulczynski2 1
2 (
|Tf (e ) |
|Tf | + |Tf (e ) |

|Tf (e ) |+ |Tp (e ) | ) SimpleMatching |Tf (e ) |+ |Tp (ē ) |
|Tf |+ |Tp | Sokal 2 |Tf (e ) |+2 |Tp (ē ) |

2 |Tf (e ) |+2 |Tp (ē ) |+ |Tf (ē ) |+ |Tp (e ) |
M1 |Tf (e ) |+ |Tp (ē ) |

|Tf (ē ) |+ |Tp (e ) | M2 |Tf (e ) |
|Tf (e ) |+ |Tp (ē ) |+2 |Tf (ē ) |+2 |Tp (e ) | RogersTanimoto |Tf (e ) |+ |Tp (ē ) |

|Tf (e ) |+ |Tp (ē ) |+2 |Tf (ē ) |+2 |Tp (e ) |
Goodman 2 |Tf (e ) |� |Tf (ē ) |� |Tp (e ) |

2 |Tf (e ) |+ |Tf (ē ) |+ |Tp (e ) | Hamming |Tf (e)|+|Tp (ē)| Euclid
q
|Tf (e)|+|Tp (ē)|

Overlap |Tf (e ) |
min( |Tf (e ) |, |Tp (e ) |, |Tf (ē ) |) Anderberg |Tf (e ) |

|Tf (e ) |+2 |Tf (ē ) |+2 |Tp (e ) | Ochiai2 |Tf (e )| |Tp (ē )|q
(|Tf (e )|+|Tp (e )|)(|Tf (ē )|+|Tp (ē )|)(|Tf (e )|+|Tp (ē )|)(|Tf (ē )|+|Tp (e )|)

Zoltar |Tf (e ) |
|Tf |+ |Tp (e ) |+

10000|Tf (ē )| |Tp (e )|
|Tf (e )|

Wong1 |Tf (e)| Wong2 |Tf (e)|�|Tp (e)|

ER5c
8><>:
0 if |Tf (e)|< |Tf |
1 if |Tf (e)|= |Tf |

GP02 2(|Tf (e)|+
q
|Tp |) +

q
|Tp (e)| GP03

r
| |Tf (e)|2�

q
|Tp (e)| |

GP13 |Tf (e)|(1 + 1
2 |Tp (e ) |+ |Tf (e ) | ) GP19 |Tf (e)|

q
| |Tp (e)|�|Tf (e)|+|Tf |�|Tp | | SBI |Tf (e ) |

|Tf (e ) |+ |Tp (e ) |

DStar2 |Tf (e ) |2
|Tp (e ) |+ |Tf (ē ) | Wong3 |Tf (e)|�h,where h =

8>>>><>>>>:

|Tp (e)| if |Tp (e)| 2
2 + 0.1(|Tp (e)|�2) if 2 < |Tp (e)| 10
2.8 + 0.01(|Tp (e)|�10) if |Tp (e)|> 10

ER1a
8><>:
�1 if |Tf (e)|< |Tf |
|Tp |�|Tp (e)| if |Tf (e)|= |Tf |

ER1b |Tf (e)|�
|Tp (e ) |
|Tp |+1

Table 8. Subject statistics
ID Program #Faults #Susp. Methods #Tests LoC

Lang Commons Lang 65 674 2,245 22K
Time Joda-Time 27 3,307 4,130 28K
Math Commons Math 106 4,594 3,602 85K
Chart JFreeChart 26 2,708 2,205 96K
Closure Closure Compiler 133 104,007 7,927 90K

Total 357 115,290 20,109 321K

For the Learning-to-Rank technique, we use both LIBSVM9 (our default library), a widely-used
library for support vector machines, and XGBoost10, an widely-used optimized distributed gradient
boosting library, to investigate their e�ectiveness. We use RankSVM with linear kernel (version
1.95) from LIBSVM with default settings, and LambdaRank from XGBoost with the gbtree booster
and a popular setting: max_depth = 60, num_round = 100, colsample_bytree=0.85, and
eta =0.5 (we use the default values for all the other parameters). For each technique, we perform
leave-one-out cross validation [B Le et al. 2016] not only across each of the �ve projects, but also
across whole �ve projects. For the total n bugs, we separate them into two groups: one bug as the
test data to predict its rank and other n � 1 bugs as the training data to build the ranking model.
We implement 34 most widely used spectrum-based fault localization formulae in Java, e.g.,

Tarantula [Jones and Harrold 2005], SBI [Liblit et al. 2005], Jaccard [Abreu et al. 2007], Ochiai [Abreu
et al. 2006], Ochiai2 [Naish et al. 2011], and Kulczynski2 [Naish et al. 2011], including all state-of-
the-art formulae. They are shown in Table 7 and the notations Tf (e),Tp (e),Tf (ē), Tp (ē),Tf and Tp
are shown in Section 2.1. These techniques all rely on coverage information of both passed/failed
tests. We perform on-the-�y bytecode instrumentation using ASM and Java Agent to collect the
required coverage information. Note that the studied spectrum-based formulae are used as baseline
techniques as well as in implementing Metallaxis.
All our experiments were conducted on a Dell machine with Intel(R) Xeon(R) CPU E5-2697

v4@2.30GHz (18C) and 94GB RAM, running Ubuntu 14.04.5 LTS and Oracle Java 64-Bit Server
version 1.8.0_77.
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4.2 Subjects, Tests and Faults
In this work, we evaluate the studied fault localization techniques on real faults from the Defects4J
benchmark11. We use all the �ve available projects from Defects4J in August 2016, which include
total 357 real faults detected during their software development cycle. The detailed subject infor-
mation used in this work are shown in Table 8. In the table, Column 1 presents the subject IDs
that will be used in the remaining text. Column 2 presents the full names for the subjects. Column
3 presents the number of studied faulty versions for each subject. Column 4 presents the total
number of suspicous methods (i.e., the methods executed by failed tests) of all faulty versions for
each subject. Columns 5 and 6 present the LoC (i.e., Lines of Code) and test number information for
the �rst version (i.e., the most recent and usually the largest version) of each subject in Defects4J.
Note that in the paper, each unique bug ID is represented by the subject ID and the buggy version
number, e.g., Lang-1 indicate the �rst buggy version of subject Lang.

4.3 Dependent Variables
Previous studies have demonstrated that statement-level fault localization may be too �ne-grained
and miss useful context information [Parnin and Orso 2011], while class-level fault localization
is too coarse-grained and cannot help understand and �x the bug within a class [Kochhar et al.
2016; Wang et al. 2015]. Therefore, following recent work on fault localization [B Le et al. 2016;
Dao et al. 2017; Le et al. 2015; Zhang et al. 2017], we also focus on method-level fault localization,
i.e., localizing the faulty methods among all the source code methods. We use the following widely
used dependent variables to measure the e�ectiveness of the studied fault localization techniques:
DV1: Recall at Top-N: This dependent variable measures the number of faults with at least
one faulty element within Top-N in the ranked list. The hypothesis for this dependent variable
is that once the �rst faulty element is found, it may become much easier to �nd the remaining
faulty elements. This metric emphasizes earlier fault detection and has been widely used in fault
localization work [Le et al. 2015; Saha et al. 2013; Zhou et al. 2012]. Note that a recent study reported
that developers usually only inspect top-ranked program elements during fault localization, e.g.,
73.58% developers only check Top-5 localized elements [Kochhar et al. 2016]. Therefore, following
prior work, we use Top-N (N=1, 3, 5) in our experimental study.
DV2: Mean Average Rank (MAR): Following existing work [Moon et al. 2014; Zhang et al. 2013],
we use the rank of the faulty methods to directly measure the developers’ e�ort in identifying the
actual faulty methods using the fault localization techniques. For the faults with multiple faulty
elements, we compute the average ranking of the faulty elements. Then, for each project, MAR is
simply the mean of the average rank for all its faults. This metric emphasizes precise localization
for all faulty elements.
DV3: Mean First Rank (MFR): In practice, for faults with multiple faulty elements, the identi�ca-
tion of the �rst faulty element can be crucial since the rest faulty elements may be directly localized
after that. Therefore, for each project, we use MFR to compute the mean of the �rst relevant faulty
element’s rank for each fault. This metric emphasizes fast localization of the �rst relevant faulty
element to ease debugging.

5 RESULT ANALYSIS
In this section, we �rst present the detailed study results for evaluating the e�ectiveness of the
original Metallaxis and MUSE on real bugs (Section 5.1). Then, we present the results of our

9https://www.csie.ntu.edu.tw/~cjlin/libsvm/
10https://github.com/dmlc/xgboost
11https://github.com/rjust/defects4j
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Table 9. E�ectiveness of existing mutation-based fault localization techniques
Subjects Techniques Top-1 Top-3 Top-5 MFR MAR Subjects Techniques Top-1 Top-3 Top-5 MFR MAR

Ochiai 6 14 15 9.00 9.51 Ochiai 6 11 13 15.96 18.87
Kulczynski2 6 15 16 9.48 10.88 Kulczynski2 7 13 14 21.23 24.95
Zoltar 6 15 16 8.80 19.36 Zoltar 7 13 14 21.27 23.80
Ochiai2 6 14 15 8.92 9.42 Ochiai2 6 11 13 16.46 18.99

Chart M2 5 13 14 34.68 35.09 Time M2 8 13 14 22.54 25.60
Me-Ochiai 7 15 17 12.68 13.31 Me-Ochiai 7 12 15 12.35 14.82
Me-Kulczynski2 7 15 17 13.04 13.66 Me-Kulczynski2 6 11 15 16.58 19.35
Me-Zoltar 7 15 17 13.04 13.66 Me-Zoltar 6 11 14 17.15 19.36
Me-Ochiai2 7 15 17 12.64 13.27 Me-Ochiai2 7 12 15 12.35 14.74
Me-M2 7 15 16 21.76 22.34 Me-M2 7 13 16 17.69 20.16
Muse 4 12 12 23.04 23.84 Muse 5 6 7 87.81 89.96
Ochiai 23 52 62 9.73 11.72 Ochiai 24 44 50 4.63 5.01
Kulczynski2 21 50 59 9.85 12.07 Kulczynski2 25 44 50 4.69 5.19
Zoltar 21 49 58 10.13 12.11 Zoltar 25 44 50 4.52 5.01
Ochiai2 23 52 62 9.72 11.70 Ochiai2 24 44 50 4.60 4.98

Math M2 22 49 56 10.14 12.46 Lang M2 25 44 50 4.82 5.19
Me-Ochiai 20 50 70 7.84 9.41 Me-Ochiai 32 51 56 2.84 3.15
Me-Kulczynski2 19 50 70 7.71 9.18 Me-Kulczynski2 32 50 56 2.85 3.17
Me-Zoltar 19 50 70 7.71 9.11 Me-Zoltar 32 50 56 2.74 3.05
Me-Ochiai2 20 50 70 7.84 9.41 Me-Ochiai2 32 51 56 2.79 3.10
Me-M2 20 47 68 8.30 10.12 Me-M2 32 51 57 2.87 3.30
Muse 17 45 55 27.54 28.44 Muse 22 38 46 6.00 6.87
Ochiai 14 30 38 90.28 102.28 Ochiai 73 151 178 39.56 44.99
Kulczynski2 17 31 41 88.51 103.11 Kulczynski2 76 153 180 39.36 45.99
Zoltar 17 31 41 87.65 102.06 Zoltar 76 152 179 39.05 46.1
Ochiai2 14 30 38 94.57 106.14 Ochiai2 73 151 178 41.2 46.43

Closure M2 17 32 40 86.19 103.14 Overall M2 77 151 174 40.51 47.91
Me-Ochiai 20 52 69 21.72 26.14 Me-Ochiai 86 180 227 12.86 15.28
Me-Kulczynski2 20 52 70 25.69 32.25 Me-Kulczynski2 84 178 228 14.66 17.88
Me-Zoltar 20 52 71 27.24 33.43 Me-Zoltar 84 178 228 15.27 18.28
Me-Ochiai2 20 52 69 21.72 26.14 Me-Ochiai2 86 180 227 12.84 15.26
Me-M2 24 55 70 25.46 36.62 Me-M2 90 181 227 15.46 20.51
Muse 26 53 63 215.89 237.86 Muse 74 154 183 98.78 107.69

extensions to traditional mutation-based fault localization by considering di�erent test failure
message types as well as the assertion-level information (Section 5.2 and Section 5.3). Finally, we
present the experimental results for our TraPT Learning-to-Rank technique combining various
dimensions of mutation information (Section 5.4).

5.1 RQ1: Mutation-based Fault Localization on Real Bugs
Quantitative Analysis. Table 9 presents the main fault localization results of Metallaxis (with
Type4 test message) and MUSE (with Type1 test message) using all the mutants generated by
PIT. Note that we also select 5 most e�ective spectrum-based formulae as the baseline from all
the 34 studied formulae to implement the Metallaxis technique. In the table, Columns “Subjects”
and “Techniques” present the corresponding subjects and studied techniques, while the other
columns present the studied metrics, including Top-N (N=1, 3, 5), MFR, and MAR. Note that, since
Metallaxis utilizes di�erent spectrum-based formulae to calculate the suspiciousness values, we use
Me-“Spectrum” to represent Metallaxis utilizing the corresponding spectrum-based formulae in the
table. From the table, we have two observations. First, Metallaxis is able to outperform spectrum-
based fault localization on most subjects in terms of the most studied metrics. For example, in total,
Ochiai (one of the most e�ective spectrum-based fault localization techniques) can only localize 73
faulty methods within Top-1, while Metallaxis with Ochiai is able to localize 86 faulty methods
within Top-1. Furthermore, MAR of Metallaxis with Ochiai is 15.28, 66.04% more precise than
that Ochiai (44.99)! To our knowledge, this is the �rst work demonstrating the e�ectiveness of
mutation-based fault localization on a large number of real bugs. Second, MUSE tends to be less
e�ective than even the traditional spectrum-based fault localization on all the studied subjects due
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public static synchronized GJChronology getInstance(DateTimeZone zone,
ReadableInstant gregorianCutover, int minDaysInFirstWeek) {

zone = DateTimeUtils.getZone(zone);
Instant cutoverInstant;
if (gregorianCutover == null) {
cutoverInstant = DEFAULT_CUTOVER;

} else {
cutoverInstant = gregorianCutover.toInstant();

+++ LocalDate cutoverDate = new LocalDate(cutoverInstant.getMillis(),
GregorianChronology.getInstance(zone));

+++ if (cutoverDate.getYear() <= 0) {
+++ throw new IllegalArgumentException("Cutover too early. Must be on or after 0001-01-01.");
+++ }
}...

}

Fig. 4. Buggy method of Time-6

to the insensitive failure message type used (i.e., the pass/fail information). Finally, the e�ectiveness
of mutation-based fault localization techniques may not be stable, e.g., Metallaxis is not uniformly
more e�ective than spectrum-based fault localization, while MUSE is also not uniformly less
e�ective. For Chart, although Metallaxis is better than Ochiai in terms of Top-N metrics, it is
inferior in terms of MFR and MAR, indicating that Metallaxis may perform extremely poorly in
some cases; for Closure, although MUSE performs poorly in MFR/MAR, it is able to localize the
most number (i.e., 26) of bugs within Top-1.

Finding 1: Overall, Metallaxis can greatly outperform corresponding spectrum-based fault
localization techniques (e.g., 66.04% more precise in MAR when using the Ochiai formula),
while MUSE tends to be even less e�ective than spectrum-based fault localization. Also,
Metallaxis and MUSE are both unstable, e.g., MUSE may even outperform Metallaxis on some
bugs.

Qualitative Analysis. The above quantitative analysis shows that even though the overall result
of Metallaxis is promising, mutation-based fault localization is not better than spectrum-based fault
localization all the time. We further qualitatively investigate why mutation-based is not better than
spectrum-based fault localization and have found the following potential reasons:

public Period(long duration) {
--- super(duration, null, null);
+++ super(duration);

}

Fig. 3. Buggy method of Time-22

Absent Mutants. In some cases, buggy
methods may not generate any mutant
so that their suspiciousness values cannot
be calculated at all. For example, shown
in Figure 3, for bug Time-22, the buggy
method Period(long duration) in class
org.joda.time.Period has only one statement, super(duration, null, null), which
simply invokes the initializer method of its super class; the corresponding bug �x changes the
statement to invoke another super class initializer super(duration). For the PIT mutation testing
tool that we used, there is no mutation operator to apply for this buggy method. Although PIT has
a mutation operator to remove method invocations, the resulting mutant is not valid for execution
since the super class initializer method must be invoked in the buggy initializer method according
to the Java speci�cation. For such cases, more mutation operators (e.g., replacing method API
invocations) need to be designed for mutation-based fault localization. For this work, in order to
rank the methods without mutants, we set their suspiciousness value as 0.

Stubborn Tests.Metallaxis and MUSE calculate suspiciousness values based on if there are mutants
impacting test executions. In some cases, however, the tests can be quite stubborn, making the
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public void test_cutoverPreZero() {
...
try {

GJChronology.getInstance(
DateTimeZone.UTC, cutover);

fail();
} catch (IllegalArgumentException ex) {

// expected
}

}

Fig. 5. Failed test of Time-6

junit.framework.AssertionFailedError
at junit.framework.Assert.fail(Assert.java:55)
at junit.framework.Assert.fail(Assert.java:64)
at junit.framework.TestCase.fail(TestCase.java:235)
at org.joda.time.chrono.TestGJDate.test_cutoverPre(...)

Fig. 6. Failure message of Time-6

public PiePlotState initialise(Graphics2D g2,
Rectangle2D plotArea,PiePlot plot,
Integer index, PlotRenderingInfo info) {

PiePlotState state = new PiePlotState(info);
state.setPassesRequired(2);

+++ if (this.dataset != null) {
state.setTotal(DatasetUtilities.

calculatePieDatasetTotal(plot.getDataset()));
+++ }

state.setLatestAngle(plot.getStartAngle());
return state;

}

Fig. 7. Buggy method of Chart-15

public void testDrawWithNullDataset() {
boolean success = false;
try {...

success = true;
}
catch (Exception e) {

success = false;
}
assertTrue(success);

}

Fig. 8. Failed test of Chart-15

protected double doSolve() {
// prepare arrays with the first points
final double[] x = new double[maximalOrder + 1];
final double[] y = new double[maximalOrder + 1];
...
// target for the next evaluation point
double targetY;
if (agingA >= MAXIMAL_AGING) {
--- targetY = -REDUCTION_FACTOR * yB;
+++ final int p = agingA - MAXIMAL_AGING;
+++ final double weightA = (1 << p) - 1;
+++ final double weightB = p + 1;
+++ targetY = (weightA * yA - weightB *

REDUCTION_FACTOR*yB)/(weightA+weightB);
}...

}

Fig. 9. Buggy method of Math-40

public void testIssue716() {
BracketingNthOrderBrentSolver solver =

new BracketingNthOrderBrentSolver
(1.0e-12, 1.0e-10, 1.0e-22, 5);

...
double result = solver.solve(100, sharpTurn,
-0.9999999,30,15,AllowedSolution.RIGHT_SIDE);

Assert.assertEquals(0, sharpTurn.value(result),
solver.getFunctionValueAccuracy());

Assert.assertTrue(sharpTurn.value(result)>=0);
Assert.assertEquals(-0.5, result, 1.0e-10);

}

Fig. 10. Failed test of Math-40

generated mutants unable to change test executions. For example, shown in Figure 4, bug Time-6
has a buggy method getInstance(...), which was �xed via adding some additional code logics.
Note that the buggy method has a number of mutants due to the large method body. However,
shown in Figure 5, the corresponding failed test TestGJDate.test_cutoverPreZero() only
has one special JUnit assertion fail(), which has no parameters and is used to make sure an
exception is thrown when executed. Therefore, the test always produces the same failure message
(shown in Figure 6), making it hard for the mutants to change its failure message no matter what
changes the mutants make. Another example is from bug Chart-15 (shown in Figure 7), whose
�xed version adds a conditional statement to perform null checks before a method invocation. As
illustrated in Figure 8, the failed test for this bug has only one assertion, assertTrue(success),
and checks that no exception is thrown. The assertion carries only boolean variable as its parameter
so that output message also cannot be changed unless the exception can be directly muted by
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mutants (which can be hard). In these cases, the mutation-based techniques are not able to change
the output messages of failed tests, making the buggy methods ranked similarly with other correct
methods. This reason actually motivates us to investigate multiple assertions inside tests to capture
more information.

Insensitive/Sensitive Failure Messages.MUSE considers pass/fail information of tests andMetallaxis
considers detailed changes in failure messages. The fact that the results of Metallaxis are much better
than those of MUSE shows that the detailed failure messages can be more informative than the
insensitive pass/fail information, indicating that insensitive information can make mutation-based
fault localization perform poorly for some cases. Meanwhile, the detailed failure messages may also
be too sensitive sometimes because they include stack traces of failed tests which may even change
for di�erent runs of the same failed tests (e.g., due to the non-determinism in real code, such as
randomness or concurrency). For example, as shown in Figure 9, bug Math-40 was �xed via adding
more computing logics for variable targetY. Its corresponding failed test is shown in Figure 10.
When localizing this bug, Metallaxis with Ochiai ranks this buggy method as 7th, while MUSE
with more insensitive test information can rank it as 1st. The reason is that the detailed test failure
message of the failed test can be easily changed by many mutants of bug-free methods, making
Metallaxis rank certain bug-free methods even higher than the actualy buggy method. To illustrate,
various mutants can cause the originally failed tests to throw di�erent types of exceptions (e.g.,
TooManyEvaluationsException and NoBracketingException) or exceptions with di�erent
messages before the JUnit assertion invocations. In contrast, only mutants of the actually buggy
method can make the originally failed test pass, making MUSE rank the buggy method as the
highest. This �nding actually motivates us to empirically study the impacts of di�erent types of
failure messages on mutation-based fault localization.

Finding 2: Absent mutants, stubborn tests, and insensitive/sensitive failure messages are the
main reasons leading to unstable or poor mutation-based fault localization.

Table 10. PIT mutation testing results
Subject Chart-1 Time-1 Lang-1 Math-1 Closure-1
Threads 2 2 2 2 9
Time Cost 1h 16m 1h 19m 1h 8m 8h 35m 18h 23m
All Mutants 58,419 30,368 29,012 98,871 98,932
Suspicious Mutants 682 268 70 233 28,250

Mutation Overhead.Mutation test-
ing has been widely recognized as
one of the most expensive testing
methodologies due to the execution
of a large number of mutants on the
tests [Jia and Harman 2011]. There-
fore, we also investigate the mutation
testing cost for fault localization. Table 10 shows the mutation testing cost by PIT for the �rst
version (i.e., the latest and usually largest version) of each subject. In the table, Row 2 represents
the number of threads used for each subject since PIT supports thread con�guration for parallel
mutation testing. Row 3 presents the mutation testing time, while Row 4 presents the number of all
generated mutants using all mutation operators of PIT. From the table, although mutation testing
only takes around 1 hour for the three smaller subjects, it can cost over 8 hours for larger subjects.
Although such mutation cost can be easily alleviated by increasing thread number, using more pow-
erful machines/clusters, or running overnight, it is still interesting to explore safe ways to reduce
mutation cost. In the literature, researchers have proposed to use selective mutation testing [O�utt
et al. 1993; Zhang et al. 2013] to randomly select a subset of mutants for fault localization [Papadakis
and Le Traon 2014, 2015]. However, as shown in prior work and also demonstrated in our above
qualitative study, unselecting an important mutant that can change the outcomes of the originally
failed tests can greatly impact the fault localization e�ectiveness.
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Table 11. Muse: all mutants vs. suspicious mutants
Subjects Top-1 Top-3 Top-5 MFR MAR
Chart All Mutants 4 12 12 23.04 23.84

Suspicious Mutants 4 12 12 23.00 23.80
Time All Mutants 5 6 7 87.81 89.96

Suspicious Mutants 5 6 7 87.81 89.96
Math All Mutants 17 45 55 27.54 28.44

Suspicious Mutants 17 45 55 27.53 28.43
Lang All Mutants 22 38 46 6.00 6.87

Suspicious Mutants 22 38 46 5.94 6.81
Closure All Mutants 26 53 63 215.89 237.86

Suspicious Mutants 26 53 63 215.89 237.86
Overall All Mutants 74 154 183 98.78 107.69

Suspicious Mutants 74 154 183 98.77 107.68

Fortunately, not all the mutants are im-
portant for fault localization; instead, only
the mutants that can potentially change
the failed test outcomes are important
for fault localization. Actually, only the
mutants occurring on the statements ex-
ecuted by failed tests (denoted as suspi-
cious mutants in this paper) can potentially
change the failed test outcomes, since the
mutated statements of other mutants can-
not even be executed by the failed tests.
Prior work on fault localization has real-
ized that Metallaxis has exactly the same results using either all mutants or only the suspicious
mutants on many formulae (including all the 5 most e�ective spectrum-based formulae shown in
Table 9) [Pearson et al. 2017]. The reason is that the Metallaxis formulae (e.g., Equation 1) only
considers the mutant with highest suspiciousness value for each ranked suspicious method, while
the non-suspicious mutants have suspiciousness value 0 and cannot impact the results for many
spectrum-based formulae. On the contrary, the MUSE formula (Equation 2) involves a weight
parameter � which is computed based on the total number of changed failed/passed tests for all
mutants, and also can have negative suspiciousness values. Therefore, it is not clear how MUSE
performs with only the suspicious mutants. To check the impact of using simply the suspicious mu-
tants for MUSE, we modify the MUSE � computation by simply using the total number of changed
failed/passed tests for the suspicious mutants, and also compute the method suspiciousness based
on the suspiciousness values of only the suspicious mutants occurring in each method. Table 11
shows that the results of MUSE using all mutants and only the suspicious mutants are almost
exactly same. For example, the overall MAR of using all mutants and suspicious mutants is 107.69
and 107.68 respectively. To our knowledge, this is the �rst study demonstrating that MUSE can
also use only the suspicious mutants without losing much accuracy. Therefore, in our following
experiments, we use only the suspicious mutants for both MUSE and Metallaxis. Shown in the
last row of Table 10, this optimization can reduce the mutation cost signi�cantly (e.g., reduce the
number of executed mutants by 71.4% to 99.8%) with almost no accuracy lost.

Finding 3: Mutation testing can cost hours for large-scale systems. However, using only the
suspicious mutants can largely reduce the mutation testing cost with almost no accuracy lost
for both Metallaxis and MUSE.

5.2 RQ2:Impacts of Di�erent Failure Message Types
Tables 12 and 13 present the fault localization results for the two studied mutation-based fault
localization techniques with 4 di�erent types of failure messages. Note that due to the space limit,
we select the best spectrum-based formulae Ochiai to implement Metallaxis (the other formulae
show similar pattern). In the tables, Column 1 lists the studied subjects, Columns 2-5 present the
MFR/MAR values for Metallaxis with di�erent types of failure messages, and Columns 6-9 present
the MFR/MAR values for MUSE with di�erent failure message types. For example, “Me-Type1”
and “Muse-Type1” represent that Metallaxis and MUSE with the �rst failure message type. For
each technique on each subject, we show their average MAR/MFR values using four di�erent
failure message types, as well the BestRank value for each failure message type (i.e., the number
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Table 12. MFR of di�erent failure types at the test level
Metallaxis MUSE

Me-Type1 Me-Type2 Me-Type3 Me-Type4 Muse-Type1 Muse-Type2 Muse-Type3 Muse-Type4
Subjects BestRank MFR BestRank MFR BestRank MFR BestRank MFR BestRank MFR BestRank MFR BestRank MFR BestRank MFR
Chart 14 22.84 18 12.92 20 12 18 12.68 14 23 17 20.2 19 18.2 18 19
Time 9 87.62 20 12.77 13 12.31 13 12.35 9 87.81 20 15.38 15 15.81 14 15.5
Math 51 27.61 66 7.06 60 8.16 57 7.84 49 27.53 62 7.38 56 8.51 54 8.14
Lang 29 5.82 48 3.11 47 2.74 44 2.84 28 5.94 47 3.16 46 2.81 45 2.87

Closure 81 215.02 76 48.46 49 32.82 48 21.72 72 215.89 82 51.73 52 34.87 53 20.98
Overall 184 98.42 228 22.79 189 17.06 180 12.86 172 98.77 228 24.84 188 18.66 184 13.36

Table 13. MAR of di�erent failure types at the test level
Metallaxis MUSE

Me-Type1 Me-Type2 Me-Type3 Me-Type4 Muse-Type1 Muse-Type2 Muse-Type3 Muse-Type4
Subjects BestRank MAR BestRank MAR BestRank MAR BestRank MAR BestRank MAR BestRank MAR BestRank MAR BestRank MAR
Chart 12 23.64 18 13.67 20 12.76 18 13.31 12 23.8 16 20.8 18 18.87 19 19.6
Time 8 89.87 21 14.58 13 14.76 12 14.82 8 89.96 19 16.91 15 17.98 15 17.61
Math 47 28.51 66 8.96 62 9.76 59 9.41 44 28.43 62 9.21 59 10.03 56 9.67
Lang 26 6.69 48 3.44 46 3.06 43 3.15 25 6.81 48 3.57 46 3.2 44 3.27

Closure 75 237.04 77 57.82 44 38.13 46 26.14 66 237.86 82 66 47 45.2 54 30.62
Overall 168 107.36 230 27.13 185 19.83 178 15.28 155 107.68 227 30.99 185 23.28 188 17.72

of bugs on which the type is the best among all four types12). For example, the BestRank value of
“Me-Type1” for project Chart is 12 in terms of MAR. It means that there are 12 Chart buggy versions
where MAR of “Me-Type1” is the lowest compared with other failure message types of Metallaxis
(i.e., “Me-Type2”, “Me-Type3” and “Me-Type4 ”). To further illustrate the detailed e�ectiveness of
di�erent types, we also take Metallaxis as example and show the detailed rank of the �rst localized
bug for each studied version in Figure 11.

The experimental data shows that for both Metallaxis and MUSE, the �rst failure message type
is much worse than other types on average (e.g., much higher MAR/MFR values and much lower
BestRank values). This is because the �rst failure message type simply traces pass/fail outcome,
while a failed test usually cannot be easily changed into passing by mutation testing. When a failed
test still fails after mutation, its exception type, exception message, or stack traces may actually
change. This is why we consider more detailed failure message types.
The experimental results also show that the more detailed Type4 test information does not

necessarily always perform better. Actually, both Type2 and Type3 information may outperform
Type4 for the two studied mutation-based fault localization techniques. For example, for Metallaxis,
Type2 and Type3 have 230 and 185 BestRank values in MAR, respectively, while Type4 ’s BestRank
is only 178. The results are also similar for MUSE and MFR. The reason is that detailed failure
messages may be too sensitive. Actually, sometimes di�erent runs of the same tests on the same
program version may produce di�erent detailed failure messages. For example, for bug Math-79,
the rank of a buggy method by Metallaxis is 9th for Type4 , but 6th for both Type2 and Type3.

Table 14. rANOVA analysis for failure message types
Df Sum Sq Mean Sq F-value Pr(>F)

Metallaxis-MFR FailureMsgType 3 1723119 574373 33.22 <2e-16***
Residuals 1041 17998584 17290

Metallaxis-MAR FailureMsgType 3 1982700 660900 37.51 <2e-16***
Residuals 1041 18340352 17618

Muse-MFR FailureMsgType 3 1682884 560961 33.45 <2e-16***
Residuals 1041 17455831 16768

Muse-MAR FailureMsgType 3 1855371 618457 36.59 <2e-16***
Residuals 1041 17596261 16903

Signi�cance codes p<0.001 (***) p<0.01 (**) p<0.05 (*)

To investigate whether the 4
failure types have statistically dif-
ferent impacts on fault localiza-
tion, we further applied the One-
way Repeated Measures ANOVA
analysis (also denoted as rA-
NOVA) [Girden 1992; Huck and
McLean 1975; von Ende 2001] on
the fault localization results using
the 4 di�erent failure types to investigate their statistical di�erences. Note that we applied rANOVA
instead of the standard ANOVA because we were investigating the impact of the factor (i.e., the
failure message type in this work) on the same set of subjects (i.e., bugs in this work). Table 14
presents the rANOVA analysis results on MFR and MAR values of Metallaxis and MUSE across
all the studied bugs from �ve subject systems. All the statistical tests were computed using the R

12Note that we increase the BestRank values for all the tied best types.
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Table 15. Test/assert level mutation for Me-Type4
Test Assert Test Assert

Subjects BestRank MAR BestRank MAR BestRank MFR BestRank MFR
Chart 18 13.31 16 19.81 17 12.68 19 19.04
Time 17 14.82 16 25.14 16 12.35 18 19.23
Math 63 9.41 75 15.82 61 7.84 80 14.74
Lang 45 3.15 52 3.83 45 2.84 54 2.98

Overall 143 8.72 159 13.97 139 7.51 171 12.41

Table 16. Test/assert level mutation for Muse-Type4
Test Assert Test Assert

Subjects BestRank MAR BestRank MAR BestRank MFR BestRank MFR
Chart 19 19.6 15 21.13 18 19 18 20.44
Time 17 17.61 18 24.97 15 15.5 20 19.31
Math 65 9.67 71 16.04 62 8.14 77 14.94
Lang 46 3.27 52 3.93 46 2.87 54 3.08

Overall 147 9.94 156 14.24 141 8.77 169 12.71

language13. From the table, we observe that the rANOVA p-value using di�erent failure message
types is <2e-06 in terms of both MAR and MFR metrics for both Metallaxis and MUSE, rejecting
the null hypothesis at the level of 0.05 (p-value«0.05). The analysis results demonstrate that the 4
di�erent failure message types have signi�cantly di�erent e�ectiveness for fault localization and
can potentially be combined together for better fault localization performance.

Finally, the experimental results show that despite the di�erent e�ectiveness of di�erent failure
message types, each failure message type has its own superiority. Although MAR of Type1 is worse
than other types, the BestRank results show that there are certain buggy versions for which Type1
outperforms other types of failure messages. For example, for the bug Chart-6, “Me-Type1” can
rank the buggy method as 2nd, outperforming other 3 types that rank the buggy method as 4th,
16th, and 16th, respectively. When we consider Type1 of this special version, we observe that very
few mutants (including the mutants of the buggy method) impact the pass/fail information of tests
so that it is easy to di�erentiate the buggy method from other methods. However, when considering
other types, we found that mutants of more methods make the failure messages change; thus, the
buggy method and other methods share the similar suspiciousness values and cannot be easily
distinguished. In this case, the rank of buggy method for Type1 is better than other types. Actually,
each type has non-trivial BestRank values in terms of MAR/MFR for both studied techniques.

Finding 4: Four di�erent failure message types have signi�cant impacts on the fault local-
ization results for both MUSE and Metallaxis. In addition, each failure message type has its
own superiority, further motivating our Learning-to-Rank solution to combine mutation
information of all four di�erent types.

5.3 RQ3:Impacts of Detailed Assertion Information
In this RQ, we further investigate the impacts of the detailed assertion-level mutation information.
As shown in Section 3.2, the default assertion also has four di�erent failure message types for the
assertion-level information. Since the results for di�erent failure message types follow a similar
pattern, in this RQ, we show the results using the Type4 failure messages as the representative.
Tables 15 and 16 present the results for Me-Type4 with Ochiai and MUSE, respectively. Note that
since Closure is a JavaScript compiler and does not have standard JUnit tests (e.g., often do not
directly contain assertions or contain self-de�ned assertions), our current implementation is not
able to trace assertion-level information for Closure. From the overall results we can observe that
MAR and MFR of the test level are better than those of the assertion level for both Metallaxis and
MUSE. For example, MAR is 8.72 at the test level while 13.97 at the assertion level for Metallaxis.
However, the assertion-level information is not always inferior to the test-level information. For
example, the BestRank values at the test level are lower than those at the assertion level in terms of
both MAR and MFR. In total, for MAR, the assertion level performs the best on 159 buggy versions
while the test level performs the best on only 143 buggy versions for Metallaxis. To illustrate, for
bug Chart-20, “Me-Type4 ” with “Ochiai” at the test level can rank the buggy method as 1st while
the assertion level can only rank it as 8th. The failed test of this buggy version is test1808376()
which includes 6 assertions in it. We assume that each assertion is denoted as a-n, where n is

13https://www.r-project.org/about.html

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 92. Publication date: October 2017.



92:22 Xia Li and Lingming Zhang

●

● ●

●

●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

1

10

0 20 40 60
Lang Buggy Versions

Bu
g 

R
an

ki
ng

Tech
● Me−Type1

Me−Type2
Me−Type3
Me−Type4

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

1

10

100

0 10 20
Time Buggy Versions

Bu
g 

R
an

ki
ng

Tech
● Me−Type1

Me−Type2
Me−Type3
Me−Type4

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ● ●

●

●

●

●

●
●

● ●

●

●

●

● ●

●
●

● ●

● ● ●

●

●

● ● ●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●1

10

100

0 25 50 75 100
Math Buggy Versions

Bu
g 

R
an

ki
ng

Tech
● Me−Type1

Me−Type2
Me−Type3
Me−Type4

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

10

100

0 10 20
Chart Buggy Versions

Bu
g 

R
an

ki
ng

Tech
● Me−Type1

Me−Type2
Me−Type3
Me−Type4

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

● ● ● ●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

10

1000

0 50 100
Closure Buggy Versions

Bu
g 

R
an

ki
ng

Tech
● Me−Type1

Me−Type2
Me−Type3
Me−Type4

Fig. 11. The impacts of di�erent failure message types on localizing the first bugs using Metallaxis

0,1,2,...,6 (0 denotes the default assertion). Without mutation, the original failed assertions are a-3
and a-4 at the assertion level. The results of mutation testing show that a-3 and a-4 still fail and
are not impacted by mutations; furthermore, a passed assertion a-1 is now impacted to fail due
to mutations. Therefore, the assertion-level information ranks the buggy method quite low. On
the contrary, at the test level, the failed test originally failed due to a3 but now fails due to a-1 in
case of mutations and the failure message changes since a-1 and a-3 throw di�erent exception
messages. Therefore, the test level is able to detect that the buggy method can impact failed tests,
and thus ranks it high. In summary, there is one failed test which has a changed value at the test
level, but there is no changed-value failed tests at the assertion level. In this case, the rank of buggy
method is better at the test level than at the assertion level. However, for bug Math-62, the rank
of buggy method is 1st at the assertion level, but 5th at the test level since the detailed assertions
capture the impact information in a �ner-grained level.

Table 17. rANOVA analysis for test/assertion levels
Df Sum Sq Mean Sq F-value Pr(>F)

Metallaxis-MFR MutationLevel 1 2613 2613.4 4.873 0.0283*
Residuals 216 115843 536.3

Metallaxis-MAR MutationLevel 1 2991 2990.9 8.534 0.00385**
Residuals 216 75697 350.4

Muse-MFR MutationLevel 1 1993 1992.9 4.553 0.034*
Residuals 216 94540 437.7

Muse-MAR MutationLevel 1 1658 1658 4.964 0.0269*
Residuals 216 72141 334

Signi�cance codes p<0.001 (***) p<0.01 (**) p<0.05 (*)

To investigate whether mutation in-
formation at di�erent levels (i.e., test or
assertion level) has statistically di�erent
impacts on fault localization, we further
applied the One-way RepeatedMeasures
ANOVA analysis (i.e., rANOVA) on the
fault localization results using the two
di�erent mutation information levels to
investigate their statistical di�erences.
Table 17 presents the rANOVA analysis results on MFR and MAR values of Metallaxis and MUSE
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Table 18. TraPT with test-level mutation information
XGBoost LIBSVM

Subjects Techniques Top-1 Top-3 Top-5 MFR MAR Top-1 Top-3 Top-5 MFR MAR
Lang Ochiai 24 44 50 4.63 5.01 24 44 50 4.63 5.01

Me-Ochiai 32 51 56 2.84 3.15 32 51 56 2.84 3.15
MULTRIC 22 42 49 5.55 5.84 23 42 49 5.50 5.82
TraPTT 40 55 59 2.37 2.72 40 57 59 2.65 2.93

Time Ochiai 6 11 13 15.96 18.87 6 11 13 15.96 18.87
Me-Ochiai 7 12 15 12.35 14.82 7 12 15 12.35 14.82
MULTRIC 4 10 11 23.31 26.82 6 13 13 24.58 27.31
TraPTT 9 16 18 13.96 16.74 6 12 16 12.88 14.18

Math Ochiai 23 52 62 9.73 11.72 23 52 62 9.73 11.72
Me-Ochiai 20 50 70 7.84 9.41 20 50 70 7.84 9.41
MULTRIC 22 46 58 14.34 16.32 19 48 58 10.41 12.64
TraPTT 35 71 81 5.88 7.50 32 66 79 5.58 7.43

Chart Ochiai 6 14 15 9.00 9.51 6 14 15 9.00 9.51
Me-Ochiai 7 15 17 12.68 13.31 7 15 17 12.68 13.31
MULTRIC 5 12 15 25.96 27.00 7 15 16 8.08 8.85
TraPTT 9 15 19 6.76 7.26 10 15 16 5.20 5.86

Closure Ochiai 14 30 38 90.28 102.28 14 30 38 90.28 102.28
Me-Ochiai 20 52 69 21.72 26.14 20 52 69 21.72 26.14
MULTRIC 9 20 26 127.12 141.93 17 31 41 87.34 100.85
TraPTT 41 72 82 11.91 17.92 54 85 94 13.95 18.97

Overall Ochiai 73 151 178 39.56 44.99 73 151 178 39.56 44.99
Me-Ochiai 86 180 227 12.86 15.28 86 180 227 12.86 15.28
MULTRIC 62 130 159 56.73 63.29 72 149 177 39.39 45.46
TraPTT 134 229 259 8.19 11.24 142 235 264 8.73 11.37

across all the bugs from the four subject systems with assertion level mutation information. From
the table, we observe that the rANOVA p-value using di�erent levels of mutation information is
always below 0.05 in terms of both MAR and MFR metrics for both Metallaxis and MUSE, rejecting
the null hypothesis at the level of 0.05.

Finding 5: The analysis results demonstrate that the test-level and assertion-level mutation
information also have signi�cantly di�erent e�ectiveness on fault localization and can be
applied in tandem to further boost fault localization.

Combining both RQ2 and RQ3, the mutation information using di�erent failure message types
for both tests and assertions can all provide useful hints for fault localization. This �nding motivates
us to combine all the available mutation information to further improve the e�ectiveness of fault
localization via Learning-to-Rank .

5.4 RQ4: Learning-to-Rank with Both Spectrum and Mutation Information
TraPT with Test Level Information. We �rst use suspiciousness values from 34 spectrum-
based formulae to implement the traditional Learning-to-Rank technique, MULTRIC [Xuan and
Monperrus 2014], which is purely based on di�erent spectrum-based techniques. Then we introduce
suspiciousness values from mutation-based fault localization using di�erent failure message types
at the test level and 34 spectrum-based fault localization, totaling 174 features14, to implement
our Learning-to-Rank technique, denoted as TraPTT . Table 18 presents the main comparison
results for our TraPTT technique with the overall most e�ective spectrum-based and mutation-
based techniques as well as MULTRIC. The experimental result show that our Learning-to-Rank
technique performs surprisingly well using both the LIBSVM and XGBoost Learning-to-Rank
libraries. For example, overall, our TraPTT using XGBoost is able to localize 134 bugs within Top-1,
which outperforms the most e�ective spectrum-based technique, the most e�ective mutation-based
technique, and MULTRIC by 83.56%, 55.81%, and 116.13%, respectively. In terms of MFR/MAR,

14That is, 34 spectrum formulae, 34 spectrum formulae * 4 di�erent failure message types for Metallaxis, and 4 di�erent
failure message types for MUSE.
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Table 19. p-value of Wilcoxon tests between TraPTT and other techniques
MAR MFR

Subjects Me-Ochiai Ochiai MULTRIC Me-Ochiai Ochiai MULTRIC
Chart m(0.1264) m(0.5524) m(0.4951) m(0.2249) m(0.2997) m(0.4158)
Time m(0.4437) m(0.394) m(0.0723) m(0.6723) m(0.5086) m(0.0512)
Lang 3(0.0039) 3(0.0003) 3(1.551e-05) 3(0.0056) 3(0.0005) 3(2.986e-05)
Math 3(0.0005) 3(9.989e-05) 3(3.085e-06) 3(1.800e-05) 3(5.443e-05) 3(1.797e-06)
Closure 3(1.515e-05) 3(2.536e-12) 3(1.214e-12) 3(1.124e-07) 3(9.761e-14) 3(5.666e-14)
Overall 3(6.283e-11) 3(7.550e-19) 3(3.656e-22) 3(1.632e-13) 3(2.172e-20) 3(4.505e-24)

Table 20. TraPT including both test and assertion level information
XGBoost LIBSVM

Subjects Techniques Top-1 Top-3 Top-5 MFR MAR Top-1 Top-3 Top-5 MFR MAR
Lang TraPTT 40 55 59 2.37 2.72 40 57 59 2.65 2.93

TraPTTA 41 57 59 2.23 2.63 45 57 60 1.84 2.39
TraPTTA(Cross Proj) 42 58 60 1.84 2.11 41 59 59 1.90 2.29

Time TraPTT 9 16 18 13.96 16.74 6 12 16 12.88 14.18
TraPTTA 7 16 18 12.46 14.85 9 14 16 14.00 15.80
TraPTTA(Cross Proj) 6 15 17 9.96 11.26 7 15 17 12.04 13.44

Math TraPTT 35 71 81 5.88 7.50 32 66 79 5.58 7.43
TraPTTA 46 78 87 5.15 7.22 37 69 85 5.34 6.95
TraPTTA(Cross Proj) 50 74 83 4.80 6.19 45 74 84 4.58 6.01

Chart TraPTT 9 15 19 6.76 7.26 10 15 16 5.20 5.86
TraPTTA 8 16 19 6.84 7.33 10 16 17 7.68 8.18
TraPTTA(Cross Proj) 9 14 15 6.04 6.52 10 16 20 6.72 7.35

Overall TraPTT 93 157 177 5.94 7.21 88 150 170 5.57 6.77
TraPTTA 102 167 183 5.39 6.84 101 156 178 5.65 6.85
TraPTTA(Cross Proj) 107 161 175 4.71 5.67 103 164 180 4.95 5.99

TraPTT is also able to outperform existing techniques by at least 36.31%/26.44%. The results using
the default LIBSVM seem even better – TraPTT with LIBSVM localizes 142 bugs within Top-1,
outperforming Ochiai, Me-Ochiai, and MULTRIC with LIBSVM by 94.52%, 65.12%, and 97.22%,
respectively. The experimental results indicate that mutation information incorporating di�erent
failure message types together with spectrum information can signi�cantly boost the e�ectiveness
of fault localization.

To further investigate statistical di�erences between our TraPTT with other techniques, we apply
Wilcoxon Signed-Rank test15 [Wilcoxon 1945] at the signi�cance level of 0.05 between TraPTT with
MULTRIC, Ochiai and Me-Ochiai separately. Note that we only show the results using our default
LIBSVM Learning-to-Rank library, and the results using XGBoost follow the same trend. Shown
in Table 19, 3 represents that there is statistical di�erence and TraPTT performs signi�cantly
better than other techniques; 7 represents that there is statistical di�erence and TraPTT performs
signi�cantly worse than other techniques; m represents that there is no statistical di�erence
between techniques. In addition, the values inside brackets represent the corresponding p-values.
From the analysis results, we can observe that TraPTT performs signi�cantly better than all the
other techniques on the majority subjects, and never performs signi�cantly worse than any other
technique. Note that for the two subjects with no statistical di�erence, TraPTT can also outperform
the existing techniques in the majority cases, and the absence of statistical di�erence is due to the
small number of bugs for those two subjects (e.g., 26 bugs for Chart and 27 for Time). Furthermore,
shown in Row “Overall”, TraPTT performs signi�cantly better than all other techniques across all
the used subjects.

Finding 6: TraPTT with test level information can signi�cantly outperform state-of-the-art
fault localization techniques, e.g., TraPTT via LIBSVM can outperform Ochiai, Me-Ochiai, and
MULTRIC in terms of Top-1 bugs by 94.52%, 65.12%, and 97.22%, respectively.

15We useWilcoxon Signed-Rank test because it does not have the assumption that the data should follow normal distribution.
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TraPT with Both Test and Assertion Level Information. According to the analysis of RQ3,
mutation information at the assertion level also plays an important role. Therefore, we further add
140 features computed from assertion-level mutation-based techniques (i.e., 34 spectrum formulae *
4 di�erent failure message types for Metallaxis, and 4 di�erent failure message types for MUSE)
to TraPTT to form the more advanced TraPTTA. Table 20 presents the results of TraPTTA on
the 4 subjects with assertion-level information (TraPTT is also included for comparison). The
experimental results show that TraPTTA further boosts TraPTT signi�cantly. For example, TraPTTA
with XGBoost/LIBSVM localizes 102/101 bugs within Top-1, 9.68%/14.77% more than TraPTT .
However, we also observe that the assertion-level information cannot help much with the overall
fault localization results (e.g., in terms of MAR/MFR) for LIBSVM.

Finding 7: TraPT with both test and assertion level information can further greatly improve
the number of top-ranked bugs (e.g., 14.77% more Top-1 bugs than TraPTT via LIBSVM), but
cannot help much with the overall fault localization results for LIBSVM.

Cross-project Prediction. So far, our cross validation setting has been following prior Learning-
to-Rank fault localization work [B Le et al. 2016; Xuan and Monperrus 2014], i.e., performing cross
validation for each of the studied projects [B Le et al. 2016]. To investigate whether bug data of
other projects can further boost TraPT’s e�ectiveness, we further extend our experimental setting
to perform cross validation across di�erent projects. That is, when performing fault localization
on one buggy version of one subject, we perform leave-one-out cross validation by using all the
other buggy versions from the same project and other projects for training. The “TraPTTA(Cross
Proj)” technique in Table 20 represents this new setting. According to the experimental results, bug
data from other projects can further help boost TraPTTA. For example, the cross-project validation
can further improve TraPTTA with XGBoost by 12.62% and 17.11% in terms of MFR and MAR,
respectively. We also notice that cross-project validation only improves the Top-N values slightly,
indicating that bug data from other projects can help with the overall results, but cannot help much
for the bugs already localized precisely.

Finding 8: Cross-project training can further improve the overall fault localization e�ective-
ness (e.g., 10+% further improvement over within-project TraPTTA via XGBoost in MFR/MAR
), but has limited help in terms of the number of top-ranked bugs.

Table 21. Training and prediction time of via LIBSVM
TraPTT TraPTTA TraPTTA (Cross Proj)

Subjects Train Prediction Train Prediction Train Prediction
Chart-1 1.09s 0.44s 1.85s 0.43s 7.34s 2.68s
Time-1 1.42s 0.30s 2.47s 0.45s 6.68s 1.86s
Lang-1 1.39s 0.08s 0.80s 0.21s 7.41s 1.35s
Math-1 2.24s 0.30s 4.17s 0.79s 7.28s 1.24s
Closure-1 25.89s 127.89s 7 7 7 7

Table 22. Training and prediction time via XGBoost
TraPTT TraPTTA TraPTTA (Cross Proj)

Subjects Train Prediction Train Prediction Train Prediction
Chart-1 24.10s 0.16s 21.92s 0.06s 65.07s 0.09s
Time-1 21.41s 0.05s 21.94s 0.06s 63.33s 0.05s
Lang-1 27.74s 0.06s 21.04s 0.05s 64.89s 0.04s
Math-1 58.72s 0.05s 44.60s 0.05s 64.64s 0.29s
Closure-1 71.99s 0.08s 7 7 7 7

Learning Overhead. Tables 21 and 22
present the time cost of Learning-to-Rank
via LIBSVM and XGBoost on the �rst ver-
sion (i.e., the latest version) of each studied
subject. Shown in Column “TraPTT ”, the
training time of “TraPTT ” ranges from 1.09
seconds to 25.89 seconds using LIBSVM,
while ranging from 21.41 seconds to 71.99
seconds using XGBoost; the prediction
time of “TraPTT ” ranges from 0.08 seconds
to 127.89 seconds using LIBSVM, while
ranging from 0.05 seconds to 0.16 seconds
using XGBoost. These results show that
both LIBSVM and XGBoost can be quite e�cient for TraPTT in practice. In addition, due to the
di�erent machine learning algorithms used, LIBSVM tends to be faster in training while XGBoost is
much faster for prediction. For example, for Closure, the size of the generated classi�cation model
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is 181M for LIBSVM, while being only 255K for XGBoost (because XGBoost uses a parallel tree
boosting and is designed to be highly e�cient, �exible and portable), making the prediction for
XGBoost much faster. Shown in Column “TraPTTA”, the training and prediction time for TraPTTA
using both LIBSVM and XGBoost is similar or slightly longer than that for TraPTT , indicating
that adding more attributes does not degrade the performance much. Shown in Column “TraPTTA
(Cross Proj)”, the training time and prediction time of TraPTTA tend to be longer in the cross-project
scenario, but is still quite practical, e.g., less than 70 seconds for all the subjects except Closure
(Note that TraPTTA is not applicable to Closure).

Finding 9: The Learning-to-Rank process for both TraPTT and TraPTTA can be quite light-
weight in practice, e.g., costing less than 3 minutes for even the largest studied subject. Also,
our results demonstrate that while LIBSVM is faster for training, XGBoost is much faster in
prediction, providing practical guidelines for practitioners.

5.5 Threats to Validity
Threats to internal validity are mainly concerned with the uncontrolled factors that may also be
responsible for the results. In this work, the main threat to internal validity is the potential faults in
the implementation of our own techniques as well as the reimplementation of existing techniques.
To reduce this threat, we built our techniques on top of state-of-the-art tools and frameworks,
such as ASM byte-code manipulation framework, Java Agent, PIT, XStream, Commons Codec,
LIBSVM, and XGBoost. We also reimplemented existing techniques/tools strictly following their
original work. Furthermore, we carefully review all our code and experimental scripts to ensure
their correctness. However, there is still a risk of introducing subjectivity during the code review,
thus introducing potential implementation or experimentation �aws.
Threats to construct validity are mainly concerned with whether the measurements used in our
study re�ect real-world situations. To reduce this threat, we use various widely used metrics to
measure the e�ectiveness of fault localization, e.g., the Top-N metric, the rank of the all faulty
elements, as well as the rank of the �rst faulty element for each fault. Furthermore, we also compare
all the studied techniques in the same experimental settings. To further reduce this threat, we plan
to perform user studies to evaluate the actual user debugging e�orts in localizing the real faults
when using di�erent techniques. Furthermore, we also plan to investigate the e�ectiveness of the
proposed techniques in helping with automated program repair [Le Goues et al. 2012; Long and
Rinard 2015; Nguyen et al. 2013; Xiong et al. 2017].
Threats to external validity are mainly concerned with whether the �ndings in our study are
generalizable for other experimental settings. The subjects, tests, and faults used in this work may
also introduce threats to external validity. To reduce these threats, we use the �ve subjects from the
widely used Defects4J benchmark suite. Furthermore, we use the tests and real faults accumulated
during the real software development cycle. However, they may still not be representative of all the
available subjects, tests, and faults. To further reduce these threats, we plan to evaluate on more
real-world projects with di�erent sizes and application domains.

6 RELATEDWORK
In this section, we discuss our related work in fault localization. Note that although there are
also a huge amount of work on information-retrieval based fault localization [Le et al. 2015; Saha
et al. 2013; Zhou et al. 2012], they do not utilize any test execution information, and only rely on
well-formed bug reports (which may not always be available [Wang et al. 2015]) for static fault
localization. Therefore, we mainly discuss about the most closely related work in spectrum and
mutation based fault localization.
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Spectrum-based Fault Localization. To date, a number of basic formulae for spectrum-based
fault localization have been proposed. For example, Jones et al. �rstly proposed Tarantula [Jones and
Harrold 2005] to rank statements by distinguishing the executions of passed and failed tests. The
SBI [Liblit et al. 2005] formula was originally introduced by Liblit et al. to compute the suspiciousness
of program predicates, and has been applied to general spectrum-based fault localization. Abreu et
al. then introduced Ochiai [Abreu et al. 2006] and Jaccard [Abreu et al. 2007] for spectrum-based
fault localization. More recently, Naish et al. [Naish et al. 2011] proposed Kulczynski2 and Ochiai2 to
improve previous formulae (e.g., Ochiai) by additionally considering the in�uence of non-executed
or passed tests. All the above formulae have been widely used in spectrum-based fault localization.
Besides investigating di�erent suspiciousness computation formulae, researchers have also

considered other dimensions for improving spectrum-based fault localization. For example, San-
telices et al. [Santelices et al. 2009] combined three types of coverage information (i.e., statements,
branches, and data dependencies) to build a more e�ective fault localization framework. Baah et
al. [Baah et al. 2011] proposed a novel causal-inference technique to reduce the confounding bias of
dynamic data and control dependencies in order to improve the fault localization. Gong et al. [Gong
et al. 2012] proposed to order unlabeled tests based on diversity maximization speedup to help
reduce the expensive test oracle e�orts during fault localization. Lucia et al. [Lucia et al. 2014]
proposed to treat fault localization as a measurement of the relationship between the execution of
program elements and test failures, and empirically studied the e�ectiveness of various existing
association measures from the literature on fault localization. Gopinath et al. [Gopinath et al.
2012] proposed to apply spectrum-based localization with speci�cation-based analysis in tandem to
localize faults more accurately. Daniel et al. [Daniel et al. 2014] investigated an improved technique
to clone the execution pro�les of fail tests beyond balanced test suite to improve the performance
of spectrum-based fault localization. However, a common limitation for those spectrum-based fault
localization techniques is that they only focus on the coverage information without considering
the impact of the code elements to the program correctness and test outcomes, and thus can have
limited e�ectiveness in practice [Parnin and Orso 2011].
Mutation-based Fault Localization. Mutation-based fault localization [Moon et al. 2014; Pa-
padakis and Le Traon 2012, 2015; Zhang et al. 2013] was proposed to improve spectrum-based
fault localization by considering the actual impacts of code elements using mutation testing [Jia
and Harman 2011; O�utt et al. 1993]. The main idea of mutation-based fault localization is to
inject mutation faults to each code element to simulate its impact on test outcomes. Papadakis
et al. [Papadakis and Le Traon 2012] was the �rst to use mutation testing results to replace the
coverage information used by spectrum-based fault localization, and demonstrated that mutation
testing information can be more e�ective than the widely used statement coverage information
on fault localization. Meanwhile, Zhang et al. [Zhang et al. 2013] �rstly used mutation testing
results to simulate the impact of program edits during software evolution, and proposed FIFL, a
framework for localizing failure-inducing program edits. Later on, Papadakis et al. [Papadakis
and Le Traon 2014, 2015] further studied to reduce the cost of mutation-based fault localization
via mutant sampling. Moon et al. [Moon et al. 2014] also proposed a new mutation-based fault
localization formulae, MUSE, based on the di�erent impacts of mutating correct and faulty state-
ments. Di�erent from spectrum-based fault localization, mutation-based fault localization focuses
on mutating source code to investigate the impacts of each code element to help with more precise
fault localization. Recently, Pearson et al. [Pearson et al. 2017] performed an extensive study to
compare the e�ectiveness of mutation-based fault localization on arti�cial and real bugs at the
statement level. They found that while mutation-based fault localization performs well on arti�tial
bugs, it cannot even outperform spectrum-based fault localization on real bugs. We think the
reason to be that the number of mutants can be quite small or frequently zero for each statement,
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making mutation-based fault localization unable to compute the suspiciousness values for many
statements, and thus perform poorly at the statement level. In contrast, in this work, we perform
an extensive study of mutation-based fault localization for localizing real bugs at the method level,
and �rstly demonstrate that mutation-based fault localization can be much more e�ective than
state-of-the-art spectrum-based techniques but sometimes unstable. Then, we further studied the
impacts of di�erent failure message types and mutation information levels on mutation-based fault
localization. Finally, our study results motivate us to improve mutation-based fault localization by
transforming programs and tests in tandem via Learning-to-Rank algorithms.

7 CONCLUSION
Fault localization is essential for both manual debugging as well as automated program repair. In this
paper, we �rst present an extensive study on the e�ectiveness of mutation-based fault localization on
real bugs of modern real-world programs. Our study results con�rm the e�ectiveness of mutation-
based fault localization, and also reveal various guidelines to further improve mutation-based
fault localization. Based on the learnt guidelines, we propose TraPT, the �rst (Learning-to-Rank )
approach that transforms both programs and tests in tandem to achieve precise fault localization.
More speci�cally, TraPT further transforms test outputs/messages and test code to record detailed
test execution information while transforming the source code via mutation testing to check the
detailed impacts of each code element. Furthermore, we also empirically studied our TraPT with
state-of-the-art fault localization techniques on 357 real faults from Defects4J. Our experimental
results show that TraPT with the default setting of LIBSVM is able to outperform state-of-the-art
mutation-based and spectrum-based fault localization by 65.12% and 94.52% in localizing Top-1
bugs, indicating a promising future for investigating fault localization via transforming both source
code and tests.

ACKNOWLEDGEMENTS
This work is supported in part by NSF Grant No. CCF-1566589, UT Dallas faculty start-up fund,
and Google Faculty Research Award. We also thank the anonymous reviewers for the valuable
comments that help improve the paper signi�cantly during the two-stage review process.

REFERENCES
Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation of similarity coe�cients for software fault

localization. In Dependable Computing, 2006. PRDC’06. 12th Paci�c Rim International Symposium on. 39–46.
Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of spectrum-based fault localization. In

Testing: Academic and Industrial Conference Practice and Research Techniques-MUTATION, 2007. TAICPART-MUTATION
2007. IEEE, 89–98.

Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. 2010. Directed test generation for e�ective fault localization. In
Proceedings of the 19th international symposium on Software testing and analysis. ACM, 49–60.

Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-to-rank based fault localization approach
using likely invariants. In Proceedings of the 25th International Symposium on Software Testing and Analysis. ACM,
177–188.

George K Baah, Andy Podgurski, and Mary Jean Harrold. 2011. Mitigating the confounding e�ects of program dependences
for e�ective fault localization. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM, 146–156.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. 2005. Learning to
rank using gradient descent. In Proceedings of the 22nd international conference on Machine learning. ACM, 89–96.

Christopher JC Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to rank with nonsmooth cost functions. In NIPS,
Vol. 6. 193–200.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent
Systems and Technology (TIST) 2, 3 (2011), 27.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 92. Publication date: October 2017.



Transforming Programs and Tests in Tandem for Fault Localization 92:29

Patrick Daniel, Kwan Yong Sim, and Soonuk Seol. 2014. Improving Spectrum-based Fault-localization through Spectra
Cloning for Fail Test Cases Beyond Balanced Test Suite. Contemporary Engineering Sciences 7 (2014), 677–682.

Tung Dao, Lingming Zhang, and Na Meng. 2017. How does execution information help with information-retrieval based
bug localization?. In Proceedings of the 25th International Conference on Program Comprehension. 241–250.

Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978. Hints on test data selection: Help for the practicing
programmer. Computer 4 (1978), 34–41.

Giovanni Denaro, Alessandro Margara, Mauro Pezze, and Mattia Vivanti. 2015. Dynamic data �ow testing of object oriented
systems. In Proceedings of the 37th International Conference on Software Engineering-Volume 1. IEEE Press, 947–958.

Görschwin Fey, Stefan Staber, Roderick Bloem, and Rolf Drechsler. 2008. Automatic fault localization for property checking.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 27, 6 (2008), 1138–1149.

Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An e�cient boosting algorithm for combining preferences.
Journal of machine learning research 4, Nov (2003), 933–969.

Ellen R Girden. 1992. ANOVA: Repeated measures. Number 84. Sage.
Liang Gong, Daniel Lo, Lingxiao Jiang, and Hongyu Zhang. 2012. Diversity maximization speedup for fault localization. In

Automated Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM International Conference on. IEEE, 30–39.
Divya Gopinath, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid. 2012. Improving the e�ectiveness of spectra-based fault

localization using speci�cations. In Automated Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM
International Conference on. IEEE, 40–49.

Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated fault localization for C programs. Electronic
Notes in Theoretical Computer Science 174, 4 (2007), 95–111.

Richard G Hamlet. 1977. Testing programs with the aid of a compiler. Software Engineering, IEEE Transactions on 4 (1977),
279–290.

Schuyler WHuck and Robert A McLean. 1975. Using a repeated measures ANOVA to analyze the data from a pretest-posttest
design: A potentially confusing task. Psychological Bulletin 82, 4 (1975), 511.

Yue Jia and Mark Harman. 2011. An analysis and survey of the development of mutation testing. Software Engineering, IEEE
Transactions on 37, 5 (2011), 649–678.

James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering. ACM, 273–282.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled testing
studies for Java programs. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA). San
Jose, CA, USA, 437–440.

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’ expectations on automated fault localization.
In Proceedings of the 25th International Symposium on Software Testing and Analysis. ACM, 165–176.

Tien-Duy B Le, Richard J Oentaryo, and David Lo. 2015. Information retrieval and spectrum based bug localization: better
together. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 579–590.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. 2012. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each. In Software Engineering (ICSE), 2012 34th International Conference
on. 3–13.

Ching-Pei Lee and Chih-Jen Lin. 2014. Large-scale linear ranksvm. Neural computation 26, 4 (2014), 781–817.
Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005. Scalable statistical bug isolation. In ACM

SIGPLAN Notices, Vol. 40. 15–26.
Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval 3, 3 (2009),

225–331.
Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering. 166–178.
Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou, and Lu Zhang. 2016. How does regression

test prioritization perform in real-world software evolution?. In Proceedings of the 38th International Conference on
Software Engineering. 535–546.

Lucia Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. 2014. Extended comprehensive study of association
measures for fault localization. Journal of Software: Evolution and Process 26, 2 (2014), 172–219.

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the mutants: Mutating faulty programs for fault
localization. In Software Testing, Veri�cation and Validation (ICST), 2014 IEEE Seventh International Conference on. IEEE,
153–162.

Jakub Možucha and Bruno Rossi. 2016. Is Mutation Testing Ready to Be Adopted Industry-Wide?. In Product-Focused
Software Process Improvement: 17th International Conference, PROFES 2016, Trondheim, Norway, November 22-24, 2016,
Proceedings 17. Springer, 217–232.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 92. Publication date: October 2017.



92:30 Xia Li and Lingming Zhang

Vincenzo Musco, Martin Monperrus, and Philippe Preux. 2016. A large-scale study of call graph-based impact prediction
using mutation testing. Software Quality Journal (2016), 1–30.

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-based software diagnosis. ACM Transactions
on software engineering and methodology (TOSEM) 20, 3 (2011), 11.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. Sem�x: Program repair via
semantic analysis. In Proceedings of the 2013 International Conference on Software Engineering. 772–781.

A Je�erson O�utt, Gregg Rothermel, and Christian Zapf. 1993. An experimental evaluation of selective mutation. In
Proceedings of the 15th international conference on Software Engineering. IEEE Computer Society Press, 100–107.

Mike Papadakis and Yves Le Traon. 2012. Using mutants to locate" unknown" faults. In Software Testing, Veri�cation and
Validation (ICST), 2012 IEEE Fifth International Conference on. IEEE, 691–700.

Mike Papadakis and Yves Le Traon. 2014. E�ective fault localization via mutation analysis: A selective mutation approach.
In Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM, 1293–1300.

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault localization. Software Testing, Veri�cation and
Reliability 25, 5-7 (2015), 605–628.

Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques actually helping programmers?. In Proceedings
of the 2011 International Symposium on Software Testing and Analysis. 199–209.

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D Ernst, Deric Pang, and Benjamin Keller. 2017.
Evaluating and improving fault localization. In Proceedings of the 39th International Conference on Software Engineering.
609–620.

Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013. Improving bug localization using structured
information retrieval. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. 345–355.

Raul Santelices, James A Jones, Yanbing Yu, and Mary Jean Harrold. 2009. Lightweight fault-localization using multiple
coverage types. In Proceedings of the 31st International Conference on Software Engineering. IEEE Computer Society,
56–66.

August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. 2014. Balancing trade-o�s in test-suite
reduction. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.
246–256.

Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma. 2007. FRank: a ranking method with �delity loss.
In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval.
ACM, 383–390.

CARL N von Ende. 2001. Repeated-measures analysis. Design and analysis of ecological experiments. Oxford University Press,
Oxford (2001), 134–157.

Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. An In-Depth Study of IR-Based Fault Localization Techniques. In
Proceedings of the International Symposium on Software Testing and Analysis. To appear.

Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics bulletin 1, 6 (1945), 80–83.
W Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. E�ective fault localization using code coverage. In Computer Software

and Applications Conference, 2007. COMPSAC 2007. 31st Annual International, Vol. 1. IEEE, 449–456.
Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu Zhang. 2017. Precise condition synthesis

for program repair. In Proceedings of the 39th International Conference on Software Engineering. 416–426.
Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking metrics for fault localization. In Software

Maintenance and Evolution (ICSME), 2014 IEEE International Conference on. IEEE, 191–200.
Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng, and Lu Zhang. 2016. Predictive mutation

testing. In Proceedings of the 25th International Symposium on Software Testing and Analysis. 342–353.
Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. 2013. Operator-based and random mutant selection:

Better together. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. 92–102.
Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical faults to localize developer faults for evolving

software. In OOPSLA. 765–784.
Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting spectrum-based fault localization using

PageRank. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. 261–272.
Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be �xed? more accurate information retrieval-based

bug localization based on bug reports. In Software Engineering (ICSE), 2012 34th International Conference on. 14–24.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 92. Publication date: October 2017.


	Abstract
	1 Introduction
	2 Background
	2.1 Spectrum-based Fault Localization
	2.2 Mutation-based Fault Localization
	2.3 Example

	3 Approach
	3.1 Test Output/Message Transformation
	3.2 Test Code Transformation
	3.3 Learning-to-Rank  Fault Localization

	4 Experimental Setup
	4.1 Implementation and Tool Supports
	4.2 Subjects, Tests and Faults
	4.3 Dependent Variables

	5 Result Analysis
	5.1 RQ1: Mutation-based Fault Localization on Real Bugs
	5.2 RQ2:Impacts of Different Failure Message Types
	5.3 RQ3:Impacts of Detailed Assertion Information
	5.4 RQ4: Learning-to-Rank with Both Spectrum and Mutation Information
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

