
Boosting Spectrum-Based Fault Localization using PageRank
Mengshi Zhang, Xia Li∗, Lingming Zhang∗, Sarfraz Khurshid

Department of Electrical and Computer Engineering, University of Texas at Austin, USA
Department of Computer Science, University of Texas at Dallas, USA∗

mengshi.zhang@utexas.edu,{xxl124730,lingming.zhang}@utdallas.edu,khurshid@ece.utexas.edu

ABSTRACT
Manual debugging is notoriously tedious and time consuming.
�erefore, various automated fault localization techniques have
been proposed to help with manual debugging. Among the exist-
ing fault localization techniques, spectrum-based fault localization
(SBFL) is one of the most widely studied techniques due to being
lightweight. A focus of existing SBFL techniques is to consider how
to di�erentiate program source code entities (i.e., one dimension
in program spectra); indeed, this focus is aligned with the ultimate
goal of �nding the faulty lines of code. Our key insight is to en-
hance existing SBFL techniques by additionally considering how
to di�erentiate tests (i.e., the other dimension in program spectra),
which, to the best of our knowledge, has not been studied in prior
work.

We present PRFL, a lightweight technique that boosts spectrum-
based fault localization by di�erentiating tests using PageRank
algorithm. Given the original program spectrum information, PRFL
uses PageRank to recompute the spectrum information by consid-
ering the contributions of di�erent tests. �en, traditional SBFL
techniques can be applied on the recomputed spectrum informa-
tion to achieve more e�ective fault localization. Although simple
and lightweight, PRFL has been demonstrated to outperform state-
of-the-art SBFL techniques signi�cantly (e.g., ranking 42% more
real faults within Top-1 compared with the most e�ective tradi-
tional SBFL technique) with low overhead (e.g., around 2 minute
average extra overhead on real faults) on 357 real faults from 5
Defects4J projects and 30692 arti�cial (i.e., mutation) faults from 87
GitHub projects, demonstrating a promising future for considering
the contributions of di�erent tests during fault localization.

CCS CONCEPTS
•So�ware and its engineering →So�ware testing and debug-
ging;
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1 INTRODUCTION
So�ware debugging is an expensive and painful process which costs
developers a lot of time and e�ort. For example, it has been reported
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that debugging can take up to 80% of the total so�ware cost [55].
�us, there is a pressing need for automated techniques that sup-
port debugging. In the last two decades, various fault localization
approaches have been proposed to help developers locate the root
cause of failures, e.g., spectrum- based [6, 15, 24, 40, 59, 63], slicing-
based [36, 62], machine-learning-based [20, 61], and mutation-
based [39, 45, 65] techniques. Recent survey by Wong et al. [58]
shows more details about various fault localization approaches.

Among the existing fault localization approaches, spectrum-
based fault localization (SBFL), is one of the most widely studied
fault localization techniques in the literature [35, 40, 59, 63]. De-
spite that SBFL is a particularly lightweight approach, it has been
shown to be competitive compared to other approaches [49]. SBFL
techniques take as input a set of passing and failing tests, and an-
alyze program execution traces (spectra) of successful and failed
executions. �e execution traces record the program entities (such
as statements, basic blocks, and methods) executed by each test.
Intuitively, a program entity covered by more failing tests but less
passing tests is more likely to be faulty. Hence, SBFL applies a
ranking formula to compute suspiciousness scores for each entity
based on the program spectra. Suspiciousness scores re�ect how
likely it is for each program entity to be faulty, and can be used
to sort program entities. �en, developers can follow the suspi-
ciousness rank list (from the beginning to the end of the list) to
manually inspect source code to diagnose the actual root cause
of failures. Recently, SBFL techniques have also been utilized by
various automated program repair techniques to localize potential
patch locations [18, 32, 34, 37, 50, 60].

�e advantage of spectrum-based fault localization is quite ob-
vious – it is an extremely lightweight approach that is scalable
and applicable for large-scale programs. An ideal fault localization
technique would always rank the faulty program entities at the top.
However, in practice, although various SBFL techniques have been
proposed (such as Jaccard/Ochiai [6], Op2 [40], and Tarantula [24]),
no technique can always perform the best – the developers usually
have to check various false-positive faults before �nding the real
one(s). We believe the current form of spectrum analysis is a key
reason that limits the e�ectiveness of all existing SBFL techniques.
Although di�erent existing SBFL techniques use di�erent formulae
for suspiciousness computation, they all only consider how to di�er-
entiate program source code entities (i.e., one dimension in program
spectra). Our key insight is that a richer form of spectrum analysis
that additionally considers how to di�erentiate tests (i.e., the other
dimension in program spectra), which, to the best of our knowledge,
has not been studied in previous work, can provide more e�ec-
tive fault localization. For instance, consider two tests t1 and t2
that are both failing tests such that t1 covers 100 program entities
while t2 only covers one. By our intuition, t2 can be much more
helpful than t1 in fault localization since t2 has a much smaller
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search space to localize the fault(s). However, the traditional SBFL
techniques ignore this useful information and consider t1 and t2
as making the same contribution on SBFL, e.g., a program entity
executed by t1 or t2 once will be treated the same regardless of
the number of entities covered by the tests.

To overcome the limitations of existing spectrum-based fault
localization techniques, we utilize the existing program spectra
more e�ectively by explicitly considering the contributions of dif-
ferent tests. Based on our insight, we present PRFL, a lightweight
PageRank-based technique that boosts spectrum-based fault local-
ization by considering the additional test information via PageRank
algorithm [43]. PRFL collects the connections between tests and
source code entities (e.g., the traditional spectrum information) as
well as the connections among source code entities (e.g., the static
call graph information) via bytecode instrumentation and analy-
sis. �en, PageRank is used to recompute the program spectrum
information: (1) program entities connected with more important
failing tests (which cover smaller number of program entities) may
be more suspicious, and (2) program entities connected with more
suspicious program entities may also be more suspicious since they
may have propagated the error states to the connected entities.
Finally, PRFL employs existing SBFL ranking formulae to compute
the �nal suspiciousness score for each program entity. We have
used our PRFL prototype to localize the faulty methods for 357 real
faults in the Defects4J [25] benchmark. Since mutation faults have
also been shown to be suitable for so�ware testing experimenta-
tion [9, 26], to further validate the e�ectiveness of the proposed
approach, we applied it to localize 30692 mutation faults generated
from 87 GitHub Java projects. �e experimental results demonstrate
that our technique can outperform state-of-the-art SBFL techniques
signi�cantly (e.g., ranking 42%/55% more real/arti�cial faults within
Top-1 compared to the most e�ective traditional technique) with
negligible overhead (e.g., around 2 minute average extra overhead
on real faults).

�is paper makes the following contributions:
• Simple Idea. We propose a simple idea that considers the

di�erent contributions of di�erent tests to further boost
spectrum-based fault localization.

• Lightweight Technique. We implement the proposed
idea as a lightweight fault localization technique, PRFL,
that uses PageRank to consider the weights of di�erent
tests to enhance spectrum-based fault localization.

• Extensive Evaluation. We evaluate our PRFL on both
real and arti�cial faults. Firstly, we evaluate our approach
on 357 real faults from 5 projects in the Defects4J bench-
mark. To reduce the threats to external validity, we fur-
ther evaluate PRFL on 30692 mutation faults of 87 GitHub
projects. Both results demonstrate the e�ectiveness and
e�ciency of the proposed technique.

2 BACKGROUND
2.1 Spectrum-Based Fault Localization
Spectrum-based fault localization techniques (SBFL) [6, 24, 40, 57]
help developers identify the locations of faulty program entities
(such as statements, basic blocks, and methods) based on observa-
tions of failing and passing test executions. A SBFL technique sorts

Table 1: Spectrum-based fault localization techniques and
de�nitions

Tech Defn Tech Defn
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ef

ef +nf
ef

ef +nf
+

ep
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ef
ef +ep+nf

Ochiai2 ef np√
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Kulczynski
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ep

ep+np+1 Dstar2
e2
f

ep+nf

all program entities by their suspiciousness scores and returns a
rank list for manual checking. If a program entity is more likely
to be faulty, it will be assigned a higher priority in the suspicious-
ness list. �erefore, an ideal SBFL technique should always rank
the faulty entity with high suspiciousness score, which can signi�-
cantly speed up the debugging process for �nding the root causes
of test failures. To compute suspiciousness scores of program en-
tities, a SBFL technique �rstly runs tests on the target program
and records the program spectrum of each failing or passing test,
i.e., the run-time pro�les about which program entities are exe-
cuted by each test. �en, based on the program spectra and test
outcomes, various statistics can be extracted for suspiciousness
computation, e.g., tuple (ef , ep , nf , np ), where ef and ep are the
numbers of failing and passing tests executing the program entity
e , while nf and np are the numbers of failing and passing tests
that do not execute the program entity e . Based on such tuples,
various SBFL formulae have been proposed. �e common intuition
of these formulae is that a program entity executed by more failing
tests and less passing tests is more likely to be faulty. �is paper
considers 8 well-studied SBFL techniques – Tarantula, Statistical
Bug Isolation (SBI), Ochiai, Jaccard, Ochiai2, Kulczynski, Op2, and
Dstar2 [6, 24, 33, 40, 57]. Tarantula, SBI, Ochiai and Jaccard [61, 62]
are the most widely-used techniques for the evaluation of fault
localization. Ochiai2 [40] is an extension version of Ochiai, which
considers the impact of non-executed or passing test cases. Op2 [40]
is the optimal SBFL technique for single-fault program, whereas
Kulczynski and Dstar2 belong to the formula family Dstar [57],
which is shown to be more e�ective than 38 other SBFL techniques.
All their formulae are listed in Table 1.

2.2 PageRank Algorithm
PageRank [43] is a link analysis algorithm proposed by Larry Page
and Sergey Brin for improving search quality and speed. PageRank
views the World Wide Web as a set of linked nodes and ranks them
based on their importance. �e intuition behind PageRank is, for
each node, if it is linked by important nodes, it should be more
important than the ones linked by unin�uential nodes. Figure 1
presents a simple directed graph to describe a small network with
four web pages, denoted by node A, B, C and D. �e edges be-
tween two nodes denote that the starting node contains a hyperlink
pointing to the ending node.

By our observation, the number of edges pointing to D is larger
than others, so it should be more important than others. On the
other hand, A is pointed by D and thus is also an important node
according to the assumption of PageRank. �en, B is in turn pointed
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A B

D C

A B C D
A 0 0 0 1
B 0.5 0 0.5 0
C 0 0.5 0 0
D 0.5 0.5 0.5 0

Figure 1: A small network and its transition matrix
by A, and also should be assigned a high score to show the impor-
tance. Formally, the websites are described by a directed graph
G = 〈V ,E〉 with n nodes and m edges. Let P be the transition ma-
trix of n by n elements. �en, each matrix element, Pi j , denotes
the probability of transitioning from node j to i and its value is

1
Outbound Link Number of Node j , the transition matrix P can be found
in Figure 1.

According to our intuition, the PageRank score of node i depends
on the PageRank scores of the nodes with edges pointing to node
i . �erefore, the PageRank score of node i can be computed by
equation:

PRi =
∑
∀j, j→i

PRj
Outbound Link Num of Node j (1)

In order to make the equation more compact, we use PageRank
vector ~x to present the PageRank score for each node and ~x is the
solution of the eigenvalue equation:

~x = P · ~x (2)

In some cases, a node may have no outbound links and its PageR-
ank score cannot be distributed to others. Considering these special
nodes, an additional teleportation vector ~v weighted by the damp-
ing parameter d is a�ached to Equation(2):

~x = d · P~x + (1 − d ) · ~v (3)

where ~v is a positive vector and ∑vi is 1. When the network scale
grows, it is harder to �nd the exact solution for the above equation
in a reasonable time. �erefore, Page et al. [43] introduced an
iterative approach to get the approximate solution. �e equation
for the kth iteration is de�ned as:

~x (k ) = d · P~x (k−1) + (1 − d ) · ~v (4)
and the initial value of ~x can be set as ~v or ~0. For the example
in Figure 1, if we use damping coe�cient d = 0.85, vector ~v =

[ 1
n ,

1
n , ...,

1
n ]T , and the initial PageRank vector ~x (0) = ~v , a�er 25

iterations, the PageRank scores of nodes A, B, C and D are 0.3134,
0.2278, 0.1343 and 0.3246, respectively. �ese scores indicate the
importance of each node. Recall that D is pointed by all others and
becomes the most important node. A is the only node pointed by
D, hence it is the second important node in the network. A and C
together have two outbound links pointing to B, whose importance
is lower thanA. C’s score is the lowest since it only has one inbound
link from B.

Not only can PageRank rank web pages, but it also has been
widely applied to various other domains. Gleich [21] surveyed the
diversity of applications of PageRank and concluded that PageRank
can be applied to Chemistry, Biology and Bioinformatics, Neu-
roscience, Bibliometrics, Databases and Knowledge Information
Systems, Recommender Systems, Social Networks Web, i.e., twelve
domains in total. Recently, PageRank-based techniques have also

1 class Code{

2 static int m1(int x){

3 if (x >= 0)

4 return x;

5 else

6 return -x;

7 }

8 static int m2(int x){

9 if (x > 1)//buggy

10 return x;

11 else

12 return 0;

13 }

14 static int m3(int x){

15 return x * x;

16 }

17 }

1 public void t1() {

2 int a = Code.m1(-2);

3 int b = Code.m2(a);

4 int c = Code.m3(b);

5 assertEquals(0, c);

6 }

7 public void t2() {

8 int a = Code.m2(5);

9 assertEquals(0, a);

10 }

11 public void t3() {

12 int a = Code.m2(15);

13 int b = Code.m3(a);

14 int c = Code.m1(b);

15 assertEquals(225, c);

16 }

17 public void t4() {

18 int a = Code.m2(30);

19 assertEquals(30, a);

20 }

Figure 2: Example code and corresponding test suite

m1

m2

m3

t1

t3

t2

t4



0 0 0 1⁄3 0
0 0 0 1⁄3 1
0 0 0 1⁄3 0
1 1⁄2 1 0 0
0 1⁄2 0 0 0


Figure 3: Test coverage graph of Code and the transition ma-
trix of failing tests. Red means the tests that failed.
been proposed to analyze so�ware systems. Chepelianskii [14]
used PageRank to analyze function importance for Linux kernel.
Kim et al. [27] proposed MonitorRank, a PageRank-based approach
to �nd root causes of anomalies in service-oriented architectures.
Bha�acharya et al. [11] proposed the notion of NodeRank based
on PageRank to measure the importance of nodes on a static graph
for so�ware analysis and fault prediction. Later on, Mirshokraie et
al. [38] proposed the notion of FunctionRank, a dynamic variant of
PageRank, for ranking functions in terms of their relative impor-
tance, for mutation testing. To the best of our knowledge, this work
is the �rst to apply the PageRank algorithm for fault localization.

3 MOTIVATING EXAMPLE
Spectrum-based fault localization techniques are designed based
on program execution statistics, which include both test coverage
and test outcomes. Execution statistics can be treated as the infor-
mation source of SBFL’s analysis, so that they determine the upper
bound of SBFL’s accuracy. When execution statistics is collected,
SBFL will distribute them to construct program spectra, then apply
various ranking formulae to compute suspiciousness score for each
program entity. Program spectrum is a practical way to present
execution statistics, however, it is risky since it loses useful infor-
mation during construction. Here an example will be analyzed to
show how program spectra a�ect the accuracy of fault localization.
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Shown in Figure 2, in example class Code, method m2 is faulty
since its conditional expression should be (x > 10) instead of (x
> 1). �is fault leads t1 and t2 to fail. Based on the spectrum
information in the le� half of Table 2, the traditional Tarantula tech-
nique would compute all the suspiciousness scores of m1, m2 and m3
as the same, i.e., 0.5. �is result is no be�er than random guess, and
thus it is not quite helpful for fault localization. However, when
we observe the detailed test coverage shown in Figure 3, we can
directly �nd that m2 is faulty since t2 fails and only covers m2. �is
example shows that di�erent tests have di�erent capabilities to lo-
cate faults, and one limitation of the original spectrum information
is that it only focuses on computing how many failing and passing
tests cover the program entities but ignores the test di�erences.
�is observation inspires us that if test can be weighted based on
their capabilities in localizing potential faults, the spectrum-based
fault localization will be more accurate.

Here we just analyze failing tests. By our intuition, the test
weight should be impacted by the test scope and the covered pro-
gram entities. Firstly, if the failing test covers very few program
entities, then it has a small scope to infer faulty entities. �erefore
its weight should be high. On the other side, if its covered entities
are more likely faulty, it in turn also should get a higher weight.
Similarly, if a program entity is covered by more highly weighted
tests, it should also be more likely to contain faults.

All above analysis is constructed on the bi-directional test cov-
erage graph, a kind of network, hence test weight analysis can be
solved by PageRank. Note that the failing and passing tests cover
di�erent set of entities, PageRank analysis will be executed twice
to generate the scores of entity importance for failing and passing
tests. We term these scores faultiness and successfulness scores re-
spectively. For example, when computing the failing test weights,
we uses vector ~x = [m1,m2,m3, t1, t2]T to present the node values
wherem1,m2 andm3 present the faultiness scores of m1, m2 and m3
and t1, t2 show the test weights of t1 and t2. �e test scopes can
be presented by teleportation vector ~v = [0, 0, 0,w1,w2]T , where
the �rst three 0s denote the corresponding three source methods
and w1 and w2 are the weights of t1 and t2. �ey can be com-
puted bywi =

c−1
i∑
c−1
i

, where ci is de�ned as the number of program
entities covered by the ith test. For this example, c1 and c2 are
3 and 1 respectively and ~v is [0, 0, 0, 0.25, 0.75]T . �e construc-
tion of transition matrix has been introduced in Section 2.2 and
the matrix P can be found in Figure 3. Assume that the damping
factor d is 0.7, ~x (0) is ~0, based on Equation(4), we can get ~x as
[0.061, 0.290, 0.061, 0.262, 0.326]T , where m2 is larger thanm1 and
m3, indicating that m2 is highly connected with failed tests and
thus is more likely to be faulty, while w1 is less than w2, indicating
that t2 is more e�ective to help with fault localization. �is result
re�ects that PageRank analysis computes faultiness score for each
method and distribute weights for tests in tandem. In the next
step, we only utilize faultiness scores to construct weighted spec-
tra since they already include the information from test weights.
�e weighted spectra can be computed by normalized faultiness
score m̂i =

mi
max ( {mj })

. In this example, only failing tests are con-
sidered, so only ef i and nf i need to be updated as êf i = m̂i · Nf
and n̂f i = Nf − êf i , where Nf is the total number of failing tests.
�e passing tests can be analyzed in the similar way, whose details

Table 2: Original and weighted spectra of Code, T denotes
Tarantula score.

Program
Entity

Original Spectrum Info Weighted Spectrum Info
ef ep nf np T ef ep nf np T

m1 1 1 1 1 0.5 0.42 1 1.58 1 0.30
m2 2 2 0 0 0.5 2 2 0 0 0.50
m3 1 1 1 1 0.5 0.42 1 1.58 1 0.30

can be found in Section 4.2. �e right half of Table 2 shows the
weighted spectrum information and updated Tarantula scores for
each Code method. According to the table, PRFL boosts Tarantula
to rank m2 as the �rst, demonstrating the e�ectiveness of PageRank
for fault localization.

Actually, although PRFL can help with Tarantula with the above
example, some other traditional formulae, e.g., Ochiai, actually can
also rank the faulty method precisely. �erefore, we further show
another example. Suppose method m1 is also faulty by changing
Line 3 to if (x ≥ 5), and also t4 is modi�ed as:

1 public void t4() {

2 int a = Code.m1(4) + 5;

3 int b = Code.m3(a);

4 assertEquals(81, b);

5 }

Since now both m1 and m2 are faulty, tests t1, t2 and t4 failed and
only t3 passed. �is result leads all three methods to share the same
traditional spectrum information, i.e., (ef , ep ,nf ,np )=(2, 1, 1, 0) –
no ma�er which SBFL formula is applied, all the methods will be
ranked with the same suspiciousness. However, as we analyzed
before, m2 is clearly a fault since it is the only method covered
by the failed t2. Based on our PRFL idea, we can get vector ~x
as [m1,m2,m3, t1, t2, t4]T =[0.099, 0.213, 0.099, 0.198, 0.238, 0.151]T .
�is outcome shows that �rstly, m2 is more likely to be faulty than
m1 and m3 since 0.213 is greater 0.099. Secondly, as we expected, m1
and m3 has the same score(0.099) and the reason is that both of them
are covered by the same tests. �irdly, t2 is the most important
(e.g., with the highest weight 0.238) test among t1, t2 and t4 since
it only covers m2. Moreover, t1 is more important than t4 since it
covers more faulty methods. �is multiple-fault example further
demonstrates the e�ectiveness of PageRank for fault localization.

4 APPROACH
Spectrum-based fault localization techniques [6, 24, 40, 57] utilize
program spectra to record execution traces and test results, and
use various ranking formulae to localize faults. However, as we
discussed in Section 3, program spectra may lose useful information
and negatively a�ect the e�ectiveness of SBFL. To alleviate this
issue, we present a novel approach, PRFL, to re�ne spectrum infor-
mation in order to improve the e�ectiveness of SBFL techniques.
Note that PRFL is a lightweight technique that generates more in-
formative spectrum and traditional SBFL techniques can be directly
applied on top of the new program spectrum information. In theory,
our PRFL idea can be applied to localize faults at di�erent granu-
larities. Previous studies demonstrated that statement-level fault
localization may be too �ne-grained and miss useful context infor-
mation [48], while class-level fault localization is too coarse-grained
and cannot help understand and �x the fault within a class [56].
�erefore, following recent work on fault localization [10, 31], we
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also focus on method-level fault localization, i.e., localizing faulty
methods among all source code methods.

PRFL consists of three major phases: preparation, PageRank
analysis and ranking. Similar with most approaches in traditional
spectrum-based fault localization, the input of PRFL is a faulty pro-
gram and its corresponding test suite (with failing test(s) revealing
the fault(s)). In the preparation phase (Section 4.1), PRFL �rst col-
lects execution traces and test results from the faulty program by
running tests. Each trace records the test name, test result (failing
or passing) and a series of executed methods of the faulty program.
Besides the connections between tests and program methods, PRFL
further applies static analysis to construct the connections between
program methods, i.e., the call graph. In the PageRank analysis
phase (Section 4.2), PRFL considers the connections between failing
tests and methods (i.e., coverage for failing tests) as well as the
connections among source methods (i.e., the call graph informa-
tion), and applies PageRank to the connections to generate the new
spectrum information for failing tests. Similarly, PRFL also updates
the spectra for passing tests. In the �nal ranking phase (Section 4.3),
PRFL takes as input the updated weighted spectra and uses existing
ranking formulae to localize faulty methods.

4.1 Preparation Phase: Static and Dynamic
Analysis

�e preparation phase in PRFL is designed to collect graph data
from both dynamic execution and source code for the PageRank
analysis. In this phase, PRFL traces test coverage graph by dynamic
analysis. When each test is running, the dynamic analysis performs
code instrumentation to automatically record which methods are
executed by the test. Note that di�erent methods may be covered
by the same failing and passing tests, which means they cannot be
di�erentiated only by the coverage graph; hence, more information
should be mined to alleviate this issue. Our heuristic is that if two
methods have the same test coverage (e.g., the same method and
test connections), the connections between the tied methods and
other methods can help break the tie (e.g., a method connected
with more fault-prone methods may also be fault-prone since it
may have propagated the error states to the connected methods).
�erefore, for each method, PRFL further applies static analysis to
extract the static call graph to obtain the connections among source
methods. �e constructed call graph will then be combined with
test coverage for the PageRank analysis.

4.2 Analysis Phase: PageRank Propagation
Here we �rst recall the original PageRank equation (Equation(3)).
�e PageRank equation consists of three elements, i.e., transition
matrix P, damping factor d , and teleportation vector ~v . To be
speci�c, damping factor d and teleportation vector ~v are parameters
and transition matrix P is constructed based on coverage and call
graph.

4.2.1 Transition Matrix Construction. As we have illustrated in
Section 3, given the test coverage information (i.e., the connections
between tests and methods), the transition matrix can be partitioned
as:

P =
[

0 PTM
PMT 0

]
(5)

where PMT and PTM denote the transition matrix between methods
and tests (based on the test coverage graph). Note that since the
test coverage graph is bipartite, the sub-matrices on top le� and
bo�om right are zero-matrices.

�e matrix P can present the di�erences between methods based
on test coverage; however, some methods may be covered by the
same failing and passing tests and they cannot be di�erentiated
only by P . To alleviate this issue, we utilize the Class Hierarchy
Analysis (CHA) call graph algorithm [17] to further distinguish
these methods. �e transition matrix of call graph is constructed
in a di�erent way. Firstly, we convert the call graph to adjacent
matrix A as follows: suppose methodmi invokes methodmj , one
edge would be added from mi to mj with weight 1. Also, mj will
return to mi when �nished and this return relation should also be
considered. Heuristically, the calling edges may be more important
than the return edges, thus we assign smaller weight, δ , on the
return edge from mj to mi , i.e., Ai j and Aji can be computed as
Ai j = 1 and Aji = δ . Note that when mj and mi invoke each other
(e.g., due to recursion), both Ai j and Aji are equal to 1 + δ . Finally,
A will be column-normalized to Â by:

Âi j =
Ai j∑
j Ai j

(6)

and the method-to-method matrix (i.e., the transition matrix of call
graph), PMM , can be computed as PMM = ÂT .

4.2.2 Teleportation Vector Design. As we have discussed before,
test weight is not only impacted by the faultiness or successfulness
likelihood of covered methods, but also by the test scope. Hence,
PRFL uses di�erent teleportation vectors to present the impact of
test scope. Teleportation vector ~v is composed by two sub-vectors:
~v =

[
~vTm ~vTt

]T , where ~vm and ~vt denote the teleportation vector
of methods and tests respectively. For both failing and passing tests,
~vm is ~0. For failing tests, ~vt is [w1,w2, ...,wm]T , where wi =

c−1
i∑
c−1
i

and ci denotes the number of methods covered by test i. �is se�ing
is based on the property that if a test failed, it covers at least one
faulty method so that a failing test with smaller scope is more
helpful to locate the faults. However, a passing test does not satisfy
this property since it may cover a faulty method whose fault is not
triggered. �erefore, the scope of a passing test does not depend on
the number of covered methods and all test scopes share the same
weight. Due to the normalization of weight wi , ~vt for passing tests
is de�ned as [ 1

m ,
1
m , ...,

1
m ]T , wherem denotes the number of the

passing tests.

4.2.3 Constrained PageRank Algorithm. In this work, we ex-
tended the standard PageRank algorithm [43] to analyze the inte-
gration of test coverage and call graph. �e standard PageRank
algorithm is applied to a graph whose nodes and edges are all con-
generic. However, in our application scenario, this prerequisite
is not satis�ed since the edges in test coverage graph present the
connections between methods and tests, which are not congeneric
with the ones in call graph. �us, the standard PageRank algorithm
may be underperformed because of edge variance.

To overcome this issue, we propose a constrained PageRank al-
gorithm to di�erentiate the edges based on their connection types.
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Our intuition is that the test coverage graph makes the main con-
tribution for fault localization, so the edges in test coverage graph
deserve more weights; on the other hand, the edges in call graph
should be set less weights. We use parameter α to tune the weight
of call graph, and the constrained transition matrix is:

P =
[
αPMM PTM
PMT 0

]
(7)

�e PageRank vector ~x in Equation(3) can be decomposed as
~x =

[
~xTm ~xTt

]T , where ~xm denotes the method faultiness or suc-
cessfulness scores and and ~xt denotes the weights of tests. �en,
the iterative Equation(3) can be updated as:

~y (k )
m = d · (αPMM · ~x

(k )
m + PTM · ~x

(k )
t ) (8)

~y (k )
t = d · PMT · ~x

(k )
m + (1 − d ) · ~vt (9)

~x (k+1)
m =

~y (k )
m

max (~y (k )
m )

(10)

~x (k+1)
t =

~y (k )
t

max (~y (k )
t )

(11)

where the both initial se�ings of ~xm and ~xt are ~0.

4.3 Ranking Phase: Weighted-Spectrum-based
Fault Localization

�e weighted spectrum can be constructed using faultiness, suc-
cessfulness score and failing, passing test number. In the second
phase , the PageRank Analysis is executed twice to generate vector
~xmf and ~xms , which consist of faultiness and successfulness scores
of all covered methods. For each method mi , its faultiness score
sf i and successfulness score ssi are extracted from ~xmf and ~xms
respectively, and the weighted spectrum can be computed as:

êf i = sf i · Nf , n̂f i = Nf − êf i
êpi = ssi · Np , n̂pi = Np − êpi

(12)

where Nf and Np denote the total number of failing and passing
tests, respectively. PRFL then applies SBFL formulae to compute sus-
piciousness scores on weighted spectra and ranks all method. �e
weighted spectra include information not only from test coverage,
but also from test scope and call graph information. �erefore, the
weighted spectra are more accurate to re�ect the method faultiness
and successfulness, and can consequently boost the e�ectiveness
of SBFL techniques.

5 EXPERIMENTAL SETUP
Our experimental study aims to answer the following research
questions:

• RQ1: How does PRFL compare with traditional SBFL tech-
niques in term of e�ectiveness and e�ciency?

• RQ2: How do di�erent con�gurations impact the e�ec-
tiveness of PRFL?

• RQ3: How do di�erent numbers of faults impact the e�ec-
tiveness of PRFL?

• RQ4: How does the fault type (e.g., real or arti�cial faults)
impact the e�ectiveness of PRFL?

Table 3: Subject statistics
ID Program #Faults LoC #Tests
Chart JFreeChart 26 96K 2,205
Closure Closure Compiler 133 90K 7,927
Lang Commons Lang 65 22K 2,245
Math Commons Math 106 85K 3,602
Time Joda-Time 27 28K 4,130
Real-Bug Total 5 Projects 357 321K 20,109
Mutation-Bug Total 87 Projects 30692 967K 10,364
5.1 Subjects
Real-Fault SubjectsDefects4J [25] is a mature real fault dataset for
testing experiments, and has been widely used in so�ware testing
research [10, 26, 29, 49, 52]. Defects4J includes 357 real faults from
5 open source projects in August 2016: JFreeChart, Google Closure
Compiler, Apache Commons Lang, Apache Commons Math and
Joda-Time. For each fault, Defects4J provides the faulty program,
the �xed program with minimum code change, the failing tests and
modi�ed source �les. We identify the faulty methods in the follow-
ing ways. Firstly, we compare the modi�ed source �les to collect
code changes. If all changes are located in a single method, we label
such method as a faulty method. However, in some other cases, the
program changes are distributed in multiple methods which may
not all be faulty. To precisely identify the actual fault-triggering
methods, we then manually apply all the possible combinations
of the modi�ed methods to get the minimum change set that can
pass all tests. Note that we used all the 357 Defects4J faults except
the faults not within method bodies. Table 3 (except the last row)
shows the statistics for the Defects4J subjects – Column 1 presents
the subject IDs that will be used in the remaining text; Column
2 presents the full name for the subjects; Column 3 presents the
number of faults for each subject; �nally, Columns 4 and 5 present
the LoC (i.e., Lines of Code) and test number information for the
most recent version of each subject in Defects4J.
Arti�cial-Fault Dataset Although Defects4J is great for evaluat-
ing testing techniques, its projects and faults are rather limited,
posing threats to external validity. Meanwhile, mutation faults
have been shown to be suitable for so�ware testing experimen-
tation [9, 26]. �erefore, we further use the PIT mutation testing
tool [5] to generates arti�cial faults for evaluating PRFL. To be
speci�c, we start from the �rst 1000 most popular Java projects
from GitHub [2]. 226 projects of those were built successfully with
Maven and passed all tests. �en, 139 projects were further re-
moved due since PIT crashed or it could not terminate within our
time limit, i.e., 2 hours. �erefore, �nally, we have 87 projects with
mutation faults, ranging from 163 to 165067 lines of code. �e last
row of Table 3 presents the statistics of the mutation faults used in
our study.

5.2 Implementation and Supporting
Tools/Platform

Data Preparation We use ASM bytecode analysis framework [1]
together with JavaAgent [3] to perform on-the-�y code instrumen-
tation to capture the test coverage for each test. Furthermore, we
also implement the static Class Hierarchy Analysis (CHA) call graph
algorithm [17] based on ASM framework. Note that we ignore all
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the 3rd party libraries and Java internal libraries during the call
graph analysis for time e�ciency.
Data Analysis We use Numpy [4], one of the most popular scien-
ti�c computing package in Python, to implement and evaluate PRFL
and other traditional SBFL techniques. PRFL applies an iterative
algorithm to compute the faultiness and successfulness scores. For
our application scenario, the test number is relative small, which
leads the sizes of transition matrices PTM and PTM limited. On
the other hand, since the method invocations are not frequent, the
transition matrix PMM is sparse. �is property makes PRFL execute
fast, and for all following experiments, PRFL is iterated 25 times
for both failing and passing tests.
Platform All our experiments were performed on a platform with
4-core Intel Core i7-6700 CPU (3.40 GHz) and 16 Gigabyte RAM on
Ubuntu Linux 16.04.

5.3 Evaluation Metrics
We use the absolute wasted e�ort (AWE) and Top-N, two widely
used metrics [10, 61, 62] to evaluate the e�ectiveness of the stud-
ied fault localization techniques. Note that all our metrics do not
consider test code.

AWE: Given a faulty program and a ranking formula (such as
Tarantula), AWE is de�ned as the ranking number of the faulty
method. However, in some cases, there are more than one method
sharing the same suspiciousness score with the faulty method, and
AWE is de�ned as the average ranking of all the tied methods. �e
AWE is computed as:

AWE (b) = |{m |susp (m) > susp (b)}|+|{m |susp (m) = susp (b)}|/2+1/2

where b is the faulty method andm is any candidate method except
b and |{·}| is the cardinality of a set. �e range of AWE is from 1
to the total number of methods. A smaller AWE means the fault
localization is more e�ective and the ideal value is 1.

Top-N: �is metric counts the number of successfully localized
faulty methods within the top-N (N=1, 3, 5) ranked results. If the
faulty methods share the same score, we use the average position
to present fault location. Higher Top-N denotes more e�ective
fault localization. Note that this metric can be quite important in
practice since developers usually only inspect top-ranked elements,
e.g., over 70% developers only check Top-5 ranked elements [28].

All our experimental data and scripts are available at:
h�ps://bitbucket.org/zms0617/pr�.

6 RESULT ANALYSIS
6.1 RQ1: PRFL’s Overall E�ectiveness and

E�ciency
To answer this RQ, we present the experimental results of PRFL
using the default con�guration (d=0.7, α=0.001 and δ=1.0) on all the
real faults from the Defects4J dataset. Table 4 presents the overall
results. In the table, di�erent columns present di�erent e�ective-
ness metrics (for each metric, Column S represents the traditional
spectrum-based techniques while Column P represents our PRFL)
and di�erent rows present the subjects and fault localization formu-
lae used. Also, the bo�om portion of the table presents the overall
results for all the Defects4J subjects, e.g., the total Top-N values and
the average AWE values. From the table, we can have the following

Table 4: Fault localization results on all Defects4J bugs
Tech Top-1 Top-3 Top-5 AWE

S P S P S P S P Impr.

Ch
ar

t Tarantula 6 6 20 22 22 24 10.42 9.28 (10.89%)
SBI 6 6 20 22 22 24 10.42 9.28 (10.89%)
Ochiai 6 10 17 20 19 24 8.27 7.55 (8.66%)
Jaccard 6 10 17 20 20 23 8.42 7.88 (6.42%)
Ochiai2 6 11 17 20 21 23 8.54 8.26 (3.32%)
Kulczynski 6 10 17 20 20 23 8.42 7.88 (6.42%)
Dstar2 5 9 16 19 19 22 9.51 7.64 (19.74%)
Op2 5 9 14 16 16 19 46.51 44.31 (4.74%)

La
ng

Tarantula 20 26 47 53 61 61 5.20 4.93 (5.24%)
SBI 20 26 47 53 61 61 5.20 4.93 (5.24%)
Ochiai 23 31 48 55 59 62 4.82 4.45 (7.81%)
Jaccard 22 29 48 54 60 61 4.86 4.58 (5.87%)
Ochiai2 22 29 49 54 59 61 4.84 4.93 (-1.74%)
Kulczynski 22 29 48 54 60 61 4.86 4.58 (5.87%)
Dstar2 24 31 49 54 59 62 4.83 4.36 (9.81%)
Op2 24 30 49 53 60 60 4.96 4.51 (9.03%)

M
at

h

Tarantula 23 34 63 67 75 82 17.56 16.08 (8.45%)
SBI 23 34 63 67 75 82 17.56 16.08 (8.45%)
Ochiai 24 36 63 67 75 84 19.33 18.05 (6.63%)
Jaccard 24 36 64 68 75 82 18.46 16.64 (9.85%)
Ochiai2 24 36 64 69 75 82 17.94 16.43 (8.41%)
Kulczynski 24 36 64 68 75 82 18.46 16.64 (9.85%)
Dstar2 24 36 63 67 75 83 19.93 17.80 (10.69%)
Op2 23 32 55 67 70 82 21.99 19.45 (11.55%)

Ti
m

e

Tarantula 5 7 11 14 16 17 20.09 19.26 (4.10%)
SBI 5 7 11 14 16 17 20.09 19.26 (4.10%)
Ochiai 6 8 11 12 18 17 18.24 16.79 (7.90%)
Jaccard 5 7 9 12 16 17 20.26 19.35 (4.50%)
Ochiai2 5 7 11 14 16 17 20.21 19.29 (4.51%)
Kulczynski 5 7 9 12 16 17 20.26 19.35 (4.50%)
Dstar2 6 8 11 12 12 12 20.03 18.09 (9.69%)
Op2 8 5 12 12 14 17 49.76 45.41 (8.75%)

Cl
os

ur
e Tarantula 12 15 31 38 41 49 126.57 100.19 (20.84%)

SBI 12 15 31 38 41 49 126.57 100.19 (20.84%)
Ochiai 14 19 33 41 44 57 116.88 85.80 (26.59%)
Jaccard 13 17 31 40 42 49 125.74 99.37 (20.97%)
Ochiai2 13 17 30 39 42 50 126.23 99.87 (20.88%)
Kulczynski 13 17 31 40 42 49 125.74 99.37 (20.97%)
Dstar2 14 20 32 41 44 56 116.49 85.33 (26.75%)
Op2 17 13 36 23 46 43 124.61 97.45 (21.79%)

O
ve

ra
ll Tarantula 66 88 172 194 215 233 35.97 29.95 (16.74%)

SBI 66 88 172 194 215 233 35.97 29.95 (16.73%)
Ochiai 73 104 172 195 215 244 33.51 26.53 (20.83%)
Jaccard 70 99 169 194 213 232 35.55 29.56 (16.83%)
Ochiai2 70 100 171 196 213 233 35.55 29.76 (16.30%)
Kulczynski 70 99 169 194 213 232 35.55 29.56 (16.83%)
Dstar2 73 104 171 193 209 235 34.16 26.64 (22.00%)
Op2 77 89 166 171 206 221 49.57 42.23 (14.81%)

observations. First, overall Ochiai and Dstar2 (marked in gray) are
the two most e�ective SBFL techniques for all the faults in Defects4J.
For example, they are the only two techniques with AWE values
below 35.00. Also, both of them are able to localize 73 faults within
Top-1 and 170+ faults within Top-3. Second, in general, PRFL is able
to boost all the studied traditional spectrum-based fault localization
techniques. For example, the overall Top-1/3/5 and AWE values of
all traditional techniques are all outperformed by the corresponding
PRFL techniques. �ird, interestingly, PRFL tends to boost more
e�ective traditional spectrum-based fault localization techniques
even more. For example, PRFL is able to boost the number of faulty
methods ranked as Top-1 by Dstar2 from 73 to 104 (i.e., 42% more),
a higher improvement than the other inferior techniques.

We also recorded the overhead of our PRFL technique. Due to the
space limitation, we only present the overhead for the �rst faulty
version (i.e., the latest faulty version usually with the largest size)
of each subject from Defects4J. Table 5 presents the overall results.
In the table, each column presents the time spent in each phase of

https://bitbucket.org/zms0617/prfl
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Figure 4: Impact of damping factor
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Figure 5: Impact of call graph weight
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Figure 6: Impact of return weight
Table 5: Fault localization overheads

Sub COV CG Analysis Ranking Total
Chart 35.18s 66.71s 0.42s 0.01s 102.32s
Closure 231.73s 431.71s 1.53s 0.01s 664.98s
Lang 23.85s 22.26s 0.14s 0.01s 46.26s
Math 268.32s 106.21s 0.82s 0.01s 375.36s
Time 21.56s 25.72s 0.34s 0.01s 47.63s
Avg. 116.13s 130.52s 0.65s 0.01s 247.31s

PRFL while the last column presents the total overhead; each row
presents the overhead for each subject while the last row presents
the average results for all the subjects. Note that coverage collection
(i.e., Column COV) and suspiciousness computation/ranking (i.e.,
Column Ranking) are also required by traditional spectrum-based
fault localization techniques. �erefore, only the call graph and
PageRank analysis time (i.e., Column CG and Column Analysis
colored in gray) is the extra overhead incurred by PRFL. Based on
the table, the PRFL technique is very lightweight and can �nish
within 5 minutes for the studied medium- and large-sized subjects
on average. Furthermore, the average extra overhead incurred by
PRFL (i.e., the call graph and PageRank analysis time) is also quite
low, e.g., 130 seconds for call graph analysis (which is close to the
coverage collection time) and less than 1 second for the PageRank
analysis. �erefore, our PRFL is a light-weight technique that can
be rather e�cient for real-world projects.

6.2 RQ2: Con�guration Impacts
In this section, we extend our experiments with di�erent con�gu-
rations to investigate the in�uence of internal factors of PRFL so as
to learn how to make PRFL achieve be�er performance. Figure 4
presents the impacts of di�erent damping factors (i.e., d) on the
e�ectiveness of PRFL using the default α=0.001 and δ=1.0. In the
�gure, the x axis presents various damping factor values, while the
y axis presents the AWE improvements of PRFL techniques over

the original pure spectrum-based techniques (di�erent formulae
are represented using di�erent lines). From the �gure, we have the
following observations. First, the damping factor does not impact
the PRFL e�ectiveness much. For example, for all the formulae on
all the subjects, the largest improvement di�erence among di�erent
damping factors is only 4%. Second, for the majority cases, when
the damping factor increases, the improvement rates slightly de-
crease. �is observation is as expected. �e reason is that when
damping factor increases, the test scope will be distributed a smaller
weight, causing it to make less contributions in localizing the faults.

Figure 5 shows the impact of the call graph weights (i.e., α ) using
the defaultd=0.7 andδ=1.0. Similar with Figure 4, the x axis presents
di�erent call graph weights, the y axis presents the improvement
rates of PRFL over pure spectrum-based techniques (di�erent line
represents di�erent formulae). From the �gure, we have the follow-
ing observations. First, on all the subjects, the improvement rates of
PRFL dramatically increase at the very beginning, but then slowly
increase or even decrease for some formulae. We think the reason
to be that when call graph weight is 0, PRFL degrades to use only
the test coverage information and cannot di�erentiate the methods
with same test coverage, hence the improvement rates are relative
low. Note that even without call graph information (i.e., α=0), PRFL
is still able to outperform pure spectrum-based techniques for the
majority cases. Second, the call graph weight has di�erent impacts
on di�erent formulae. For example, the improvement rate of PRFL
over Op2 eventually decreases dramatically for subjects Time and
Closure, while the improvement rates keep stable or increasing for
the other formulae on the most subjects. Also, the impact of call
graph weight is similar for Tarantula and SBI, as well as Jaccard
and Kulczynski due to the similarities in the formula de�nition.

Figure 6 shows the impact of the return edge weights (i.e., δ )
using d=0.7 and α=0.001. Similar with Figure 4 and 5 , the x axis
presents di�erent return edge weights, while the y axis presents the
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Table 6: Overall fault localization results on single and multiple Defects4J bugs
Single-bug versions Multi-bug versions

Tech Top-1 Top-3 Top-5 AWE Top-1 Top-3 Top-5 AWE
S P S P S P S P Impr. S P S P S P S P Impr.

Tarantula 57 72 121 135 150 161 31.25 25.41 (18.69%) 9 16 51 59 65 72 46.54 39.93 (14.20%)
SBI 57 72 121 135 150 161 31.25 25.41 (18.69%) 9 16 51 59 65 72 46.54 39.93 (14.20%)
Ochiai 64 84 127 140 156 171 26.40 19.95 (24.44%) 9 20 45 55 59 73 48.13 40.10 (16.68%)
Jaccard 61 79 123 137 151 162 29.95 24.38 (18.59%) 9 20 46 57 62 70 47.16 40.30 (14.55%)
Ochiai2 61 78 122 136 151 162 30.21 24.70 (18.24%) 9 22 49 60 62 71 46.79 40.33 (13.81%)
Kulczynski 61 79 123 137 151 162 29.95 24.38 (18.59%) 9 20 46 57 62 70 47.16 40.30 (14.55%)
Dstar2 65 85 128 141 156 171 26.30 19.66 (25.25%) 8 19 43 52 53 64 50.07 40.81 (18.48%)
Op2 72 77 135 143 163 182 24.28 18.00 (25.84%) 5 12 31 28 43 39 93.00 83.25 (10.49%)

improvement rates of PRFL over pure spectrum-based techniques.
From this �gure, we observe that the improvement rates of PRFL
(especially on Op2) on all the subjects are quite low and sometimes
even below zero when δ=0.0. We found the potential reason to be
that when δ=0.0, all return edges are ignored in call graph, and the
invoked methods are assigned with too much faultiness or success-
fulness scores. Especially, faultiness score plays a leading role in
Op2 and can make callee methods more suspicious than the caller
methods, thus decreasing the e�ectiveness of PRFL. Furthermore,
interestingly, we also observe that is that the return edge weight
does not impact the PRFL e�ectiveness much when δ>0.1, e.g.,
the largest improvement di�erence among di�erent return edge
weights is no more than 5% for all the formulae on all the subjects.

6.3 RQ3: Impact of Fault Number
�e real faults from Defects4J include both single-fault and multi-
fault versions. To further investigate the impacts of fault number,
we split the overall fault localization results of PRFL on real faults
into single-fault and multi-fault results. Table 6 presents the main
results. In the table, the le� half presents the results on single-fault
versions while the right half presents the results on the multi-fault
versions. From the table, we have the following �ndings. First, we
�nd that the traditional techniques perform di�erently on single
and multiple faults. For example, Dstar2 and Op2 (marked in gray
in the le� half) are the two overall most e�ective techniques for
single faults, while Tarantula and SBI (marked in gray in the right
half) are the two overall most e�ective techniques for multiple
faults. In particular, Op2 performs the best on single faults (also
con�rmed by prior work [40]), e.g., with the highest Top-1 value
(i.e., 72) and the lowest AWE value (i.e., 24.28), but performs the
worst on multiple faults, e.g., with the lowest Top-1 value (i.e., 5)
and the highest AWE value (i.e., 93.00). We found the reason to be
that Op2 is speci�cally designed and also shown to be optimal for
single-fault programs [40], but it cannot perform well for multi-
fault programs. Second, we �nd that despite the fact that various
techniques perform di�erently on single or multiple fault programs,
PRFL is able to boost all the studied techniques similarly on both
single and multiple fault programs. For example, the Top-1 value
improvement for Dstar2 is 31% (from 65 to 85) on single-fault pro-
grams and 138% (from 8 to 19) on multi-fault programs. Finally,
PRFL tends to boost more e�ective techniques more for single faults.
For example, the AWE improvement for Op2 (i.e., 25.84%) is the
highest for single faults. For multiple faults, this rule does not
hold anymore – the AWE improvement for two optimal techniques,
Tarantula and SBI, is 14.20%, which is lower than that of Dstar2
(i.e., 18.48%).

Table 7: Fault localization results on mutation bugs
Tech Top-1 Top-3 Top-5 AWE

S P S P S P S P Impr.
Tarantula 2712 3012 7751 8052 10982 11316 21.69 21.36 (1.50%)
SBI 2711 3010 7750 8048 10982 11313 21.74 21.41 (1.48%)
Ochiai 6570 10067 14710 16925 18036 19949 11.67 9.79 (16.06%)
Jaccard 6470 9934 14518 16673 17815 19638 12.04 10.26 (14.84%)
Ochiai2 6356 9564 14242 16036 17444 18980 13.24 11.82 (10.69%)
Kulczynski 6470 9934 14518 16673 17815 19638 12.04 10.26 (14.83%)
Dstar2 6700 10352 14987 17365 18293 20394 11.40 9.42 (17.44%)
Op2 7216 9590 15851 17352 19253 20670 10.37 8.61 (16.93%)

6.4 RQ4: Impact of Fault Type
So far we have studied the e�ectiveness of PRFL on real faults from
the Defects4J dataset. In this section, we further study the e�ec-
tiveness of PRFL on arti�cial mutation faults from other projects to
reduce the threats to external validity. Table 7 presents our results
on 30692 mutation faults from 87 GitHub projects. In the table,
di�erent rows present the results for di�erent fault localization for-
mulae, while di�erent columns present the di�erent metrics used.
According to the table, we �nd that most e�ective techniques are
the same with those for single real faults on Defects4J (shown in
Table 6), i.e., Dstar2 and Op2 (marked in gray in the table), demon-
strating the result consistency on real and mutation single faults
(Note that mutation faults are all single faults since mutation test-
ing generates one syntactic change for each mutant). Furthermore,
PRFL also boosts the original most e�ective formulae to the most
e�ective PRFL techniques. With the PRFL supports, Dstar2 and Op2
are again the most e�ective technique. For example, PRFL is able
to boost the number of faults ranked as Top-1 by Dstar2 from 6700
to 10352 (e.g., 55% more), and reduce the AWE value of Op2 from
10.37 to 8.61 (16.93% more precise). �ese �ndings demonstrate
that the e�ectiveness of PRFL is not impacted much by the fault
type and subject programs used.

7 RELATEDWORK
To the best of our knowledge, this paper is the �rst work to im-
prove spectrum-based fault localization using PageRank. We list
the related work in fault localization as follows.
Spectrum-Based Fault Localization Various formulae have been
proposed for computing suspiciousness scores of program entities
based on passing and failing test cases. Jones et al. [24] proposed
the �rst foundational ranking formula, Tarantula, which is based on
the intuition that program entries which are frequently executed by
failing test cases and infrequently executed by passing test cases are
more likely to be faulty. Dallmeier et al. [15] proposed Ample, an
Eclipse plug-in for identifying faulty classes in Java so�ware. Abreu
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et al. [6] designed Ochiai, which is also widely- studied and state-of-
the-art ranking formula. Naish et al. [40] proposed the theoretical-
best ranking formulae for single faults, Op and Op2, and empirically
analyzed the existing ranking formulae on C programs. Yoo [63]
generated a group of ranking formulae using genetic programming
(GP). Xie et al. [59] summarized existing ranking formulae and
theoretically compared them, �nding that formulae of two families
are optimal, including Op, Op2 and four GP-generated formulae.
Lucia et al. [35] investigated the e�ectiveness of existing work and
concluded that there is no best single ranking formula for all cases.
Similarly, Steimann et al. [54] studied the threats to the validity in
SBFL on ten open-source programs and showed that well-known
fault locators do not uniformly perform be�er.
Machine-Learning-Based Fault Localization Several existing
work has applied machine learning techniques to improve the ac-
curacy of SBFL. Nath et al. [41] proposed TFLMs, a Relational Sum-
Product Network model for fault localization. TFLMs could be
learned from a corpus of faulty programs and localized faults in
a new context more accurately. Feng et al. [20] proposed Error
Flow Graph (EFG), a Bayesian Network to predict fault locations.
EFG is constructed from the dynamic dependency graphs of the
programs and then standard inference algorithms are employed to
compute the probability of each executed statement being faulty.
Xuan et al. [61] proposed Multric, which applied RankBoost, a
pairwise learning-to-rank algorithm to combine 25 existing formu-
lae. Roychowdhury et al. [51] utilized feature selection for fault
localization and Le et al. [30] extended a standard feature selection
to identify program entities which capture important characteris-
tics of failing tests. Actually, our work can also be treated as an
unsupervised-learning- based fault localization technique.
Mutation-Based Fault Localization Besides spectrum-based and
machine-learning-based fault localization, there was one category
of approach utilizing mutation analysis [44, 46, 47]. Papadakis et
al. [45] �rstly applied mutation testing to traditional fault localiza-
tion. Zhang et al. [65] �rstly applied mutation testing to localize
faults during regression testing. Later on, Moon et al. [39] proposed
MUSE, a mutation- based fault localization technique by analyzing
mutant impacts on faulty and correct program entities. Hong et
al. [23] developed new mutation operators as well as traditional
operators to improve fault localization in real-world multilingual
programs. �ere are also empirical studies evaluating mutation-
based fault localization techniques [13, 49].
Slicing-Based Fault Localization Slicing technique is also widely
used in fault localization [68, 69]. Zhang et al. [67] proposed a for-
ward and a bidirectional dynamic slicing techniques for improving
fault localization. Alves et al. [8] used dynamic slicing technique
and change-impact analysis to prune irrelative code statements
to improve Tarantula SBFL. Sinha et al. [53] focused on the fault
localization of Java Runtime Exceptions. �ey combined dynamic
analysis and static backward data- �ow analysis to detect source
statements which lead to exceptions. Xuan et al. [62] proposed
to use program slicing to trim test cases into minimal fractions to
achieve more precise spectrum-based fault localization. Gupta et
al. [22] combined delta debugging which can identify a minimal
failure-inducing input with forward and backward dynamic pro-
gram slicing to narrow down probably faulty code for improving
fault localization. Ocariza et al. [42] also proposed an automated

technique to improve fault localization for Javascript code via back-
ward slicing.
Other Fault Localization Techniques Campos et al. [12] applied
entropy theory in the �tness function to extend existing test suites
with new test cases in order to improve fault localization. Alipour
et al. [7] extracted extended invariants such as execution features to
improve fault localization. Zhang et al. [66] identi�ed the causes of
faults by switching predicates’ outcome at runtime and altering the
control �ow. Yu et al. [64] introduced multiple kinds of spectrum
types such as control and data dependences to build fault localiza-
tion model. Le et al. [31] and Dao et al. [16] combined SBFL with
information retrieval based fault localization, which recommends
a set of program entities with similar contents of bug reports. Le
et al. [10] employed likely invariants and suspiciousness scores to
locate faults. In this work, they used Daikon’s Invariant Di� [19]
tool to mine changes in invariant sets between failing and passing
program executions. �ey then applied learning-to-rank algorithm
to predict fault positions.

8 CONCLUSION
Manual debugging remains costly and painful. Researchers have de-
veloped various techniques to automate debugging. A particularly
well-studied class of techniques is spectrum-based fault localization
(SBFL), which help developers infer the positions of faulty program
entities. Despite the research progress, current SBFL techniques
fail to deliver the promise they hold. In this paper, we propose
PRFL, a novel approach to boost the accuracy of spectrum-based
fault localization. PRFL uses PageRank algorithm to analyze the
importance of each test, and then ranks methods by considering
the corresponding test importance. We evaluated our approach on
357 real bugs and 30692 mutation bugs. �e experimental results
showed that PRFL outperforms existing state-of-the-art SBFL tech-
niques signi�cantly (e.g., ranking 42%/55% more real/arti�cial bugs
within Top-1 compared with the most e�ective traditional SBFL
technique), with low overhead.
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