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ABSTRACT
Software bugs are prevalent in modern software systems and noto-
riously hard to debug manually. Therefore, a large body of research
efforts have been dedicated to automated software debugging, in-
cluding both automated fault localization and program repair. How-
ever, the existing fault localization techniques are usually ineffective
on real-world software systems while even the most advanced pro-
gram repair techniques can only fix a small ratio of real-world
bugs. Although fault localization and program repair are inherently
connected, we observe that in the literature their only connection
is that program repair techniques usually use off-the-shelf fault
localization techniques (e.g., Ochiai) to determine the potential can-
didate statements/elements for patching. In this work, we explore
their connection in the other direction, i.e., can program repair in
turn help with fault localization? In this way, we not only open a new
dimension for more powerful fault localization, but also extend the
application scope of program repair to all possible bugs (not only
the bugs that can be directly automatically fixed). We have designed
ProFL, a simplistic approach using patch-execution results (from
program repair) as the feedback information for fault localization.
The experimental results on the widely used Defects4J benchmark
show that the basic ProFL can already localize 161 of the 395 studied
bugs within Top-1, while state-of-the-art spectrum and mutation
based fault localization techniques at most localize 117 within Top-1.
We also demonstrate ProFL’s effectiveness under different settings.
Lastly, we show that ProFL can further boost state-of-the-art fault
localization via both unsupervised and supervised learning.

1 INTRODUCTION
Software bugs (also called software faults, errors, defects, flaws,
or failures [65]) are prevalent in modern software systems, and
have been widely recognized as notoriously costly and disastrous.
For example, in 2017, Tricentis.com investigated software failures
impacting 3.7 Billion users and $1.7 Trillion assets, and reported that
this is just scratching the surface – there can be far more software
bugs in the world than we will likely ever know about [61]. In practice,
software debugging is widely adopted for removing software bugs.
However, manual debugging can be extremely tedious, challenging,
and time-consuming due to the increasing complexity of modern
software systems [60]. Therefore, a large body of research efforts
have been dedicated to automated debugging to reduce manual-
debugging efforts [6, 26, 43, 51, 60].

There are two key questions in software debugging: (1) how to
automatically localize software bugs to facilitate manual repair? (2)
how to automatically repair software bugs without human interven-
tion? To address them, researchers have proposed two categories
∗This work was mainly done when Yiling Lou was a visiting student in UT Dallas.

of techniques, fault localization [3, 12, 22, 33, 42, 71, 72] and pro-
gram repair [24, 28, 29, 35, 36, 52, 53, 63]. For example, pioneering
spectrum-based fault localization (SBFL) techniques [3, 12, 22] com-
pute the code elements covered by more failed tests or less passed
tests as more suspicious, pioneering mutation-based fault local-
ization (MBFL) techniques [42, 46, 72] inject code changes (e.g.,
changing > into >=) based on mutation testing [15, 20] to each
code element to check its impact on test outcomes, and pioneer-
ing search-based program repair techniques (e.g., GenProg [29])
tentatively change program elements based on certain rules (e.g.,
deleting/changing/adding program elements) and use the original
test suite as the oracle to validate the generated patches. Please
refer to the recent surveys on automated software debugging for
more details [41, 67]. To date, unfortunately, although debugging
has been extensively studied and even has drawn attention from
industry (e.g., FaceBook [38, 58] and Fujitsu [57]), we still lack prac-
tical automated debugging techniques: (1) existing fault localization
techniques have been shown to have limited effectiveness in prac-
tice [47, 68]; (2) existing program repair techniques can only fix a
small ratio of real bugs [17, 21, 64] or specific types of bugs [38].

In this work, we aim to revisit the connection between pro-
gram repair and fault localization for more powerful debugging.
We observe that the current existing connection between fault lo-
calization and program repair is that program repair techniques
usually use off-the-shelf fault localization techniques to identify
potential buggy locations for patching, e.g., the Ochiai [3] SBFL
technique is leveraged in many recent program repair techniques,
including PraPR [17], CapGen [64], and SimFix [21]. Different from
prior work, we aim to connect program repair and fault localization
in the reversed way, and explore the following question, can pro-
gram repair in turn help with fault localization? Our basic insight
is that the patch execution information during program repair can
provide useful feedbacks and guidelines for powerful fault localiza-
tion. Based on this insight, we designed, ProFL (Program Repair for
Fault Localization), a simplistic feedback-driven fault localization
approach that leverages patch-execution information from state-
of-the-art PraPR [17] repair tool for rearranging fault localization
results computed by off-the-shelf fault localization techniques. Note
that even state-of-the-art program repair techniques can only fix a
small ratio of real bugs (i.e., <20% for Defects4J [17, 21, 64]) fully
automatically and were simply aborted for the vast majority of
unfixed bugs, while our approach extends the application scope of
program repair to all possible bugs – program repair techniques can
also provide useful fault localization information to help with manual
repair even for the bugs that are hard to fix automatically.

We have evaluated our ProFL on the Defects4J (V1.2.0) bench-
mark, which includes 395 real-world bugs from six open-source
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Java projects and has been widely used for evaluating both fault
localization and program repair techniques [17, 21, 31, 59, 64]. Our
experimental results show that ProFL can localize 161 bugs within
Top-1, while state-of-the-art spectrum and mutation based fault
localization techniques can at most localize 117 bugs within Top-1.
We further investigate the impacts of various experimental config-
urations: (1) we investigate the finer-grained patch categorizations
and observe that they do not have clear impact on ProFL; (2) we in-
vestigate the impact of different off-the-shelf SBFL formulae used in
ProFL, and observe that ProFL consistently outperforms traditional
SBFL regardless of the used formulae; (3) we replace the repair feed-
back information with traditional mutation feedback information in
ProFL (since they both record the impacts of certain changes to test
outcomes), and observe that ProFL still localizes 141 bugs within
Top-1, significantly outperforming state-of-the-art SBFL and MBFL;
(4) we feed ProFL with only partial patch-execution information
(since the test execution will be aborted for a patch as soon as it gets
falsified by some test for the sake of efficiency in practical program
repair scenario), and observe that, surprisingly, ProFL using such
partial information can reduce the execution overhead by 96.2%
with negligible effectiveness drop; (5) we also apply ProFL on a
newer version of Defects4J, Defects4J (V1.4.0) [19], and observe that
ProFL performs consistently. In addition, we further observe that
ProFL can even significantly boost state-of-the-art fault localization
via both unsupervised [73, 74] and supervised [30] learning, local-
izing 185 and 216.8 bugs within Top-1, the best fault localization
results via unsupervised/supervised learning to our knowledge.

This paper makes the following contributions:

• This paper opens a new dimension for improving fault local-
ization via off-the-shelf program repair techniques, and also
extends the application scope of program repair techniques
to all possible bugs (not only the bugs that can be directly
automatically fixed).

• We have implemented a fully automated feedback-driven
fault localization approach, ProFL, based on the patch-execution
results from state-of-the-art program repair technique, PraPR.

• We have performed an extensive study of the proposed
approach on the widely used Defects4J benchmarks, and
demonstrated the effectiveness, efficiency, robustness, and
general applicability of the proposed approach.

2 BACKGROUND AND RELATEDWORK
Fault Localization [3, 7, 12, 22, 33, 42, 48, 54–56, 71, 72] aims to
precisely diagnose potential buggy locations to facilitate manual
bug fixing. The most widely studied spectrum-based fault localiza-
tion (SBFL) techniques usually apply statistical analysis (e.g., Taran-
tula [22], Ochiai [3], and Ample [12]) or learning techniques [7, 54–
56] to the execution traces of both passed and failed tests to identify
the most suspicious code elements (e.g., statements/methods). The
insight is that code elements primarily executed by failed tests are
more suspicious than the elements primarily executed by passed
tests. However, a code element executed by a failed test does not nec-
essarily indicate that the element has impact on the test execution
and has caused the test failure. To bridge the gap between coverage
and impact information, researchers proposed mutation-based fault
localization (MBFL) [42, 45, 46, 72], which injects changes to each

code element (based onmutation testing [15, 20]) to check its impact
on the test outcomes. MBFL has been applied to both general bugs
(pioneered byMetallaxis [45, 46]) and regression bugs (pioneered by
FIFL [72]). ProFL shares similar insight with MBFL in that program
changes can help determine the impact of code elements on test
failures. However, ProFL utilizes program repair information that
aims to fix software bugs to pass more tests rather than mutation
testing that was originally proposed to create new artificial bugs to
fail more tests; ProFL also embodies a new feedback-driven fault
localization approach. Besides SBFL and MBFL, researchers have
proposed to utilize various other information for fault localization
(such as program slicing [71], predicate switching [75], code com-
plexity [59], and program invariant [5] information), and have also
utilized supervised learning to incorporate such different feature
dimensions for fault localization [30, 31, 70]. However, the effec-
tiveness of supervised-learning-based fault localization techniques
may largely depend on the training sets, which may not always
be available. Therefore, researchers recently have also proposed to
recompute SBFL suspiciousness by considering the contributions
of different tests via the unsupervised-learning-based PageRank
analysis [73, 74]. In this work, we aim to explore a new direction
for simplistic fault localization without supervised learning, i.e.,
leveraging patch-execution information (from program repair) for
powerful fault localization.
Automated Program Repair (APR) techniques [10, 13, 16, 18, 35,
36, 39–41, 44, 49, 62, 69] aim to directly fix software bugs with
minimal human intervention via synthesizing genuine patches
(i.e., the patches semantically equivalent to developer patches).
Therefore, despite a young research area, APR has been exten-
sively studied in the literature. State-of-the-art APR techniques
can be divided into two broad categories: (1) techniques that dy-
namically monitor program executions to find deviations from
certain specifications, and then heal the program under test via
modifying its runtime states in case of abnormal behaviors [37, 50];
(2) techniques that directly modify program code representations
based on different rules/strategies, and then use either tests or
formal specifications as the oracle to validate each generated can-
didate patch to find plausible patches (i.e., the patches passing
all tests/checks) [10, 13, 18, 36, 40, 44, 49, 69]. Among these code-
representation-level techniques, those based on tests have gained
popularity since testing is the prevalent methodology for detecting
software bugs in practice. Based on different hypotheses, state-
of-the-art code-representation-level techniques leverage a variety
of strategies to generate/synthesize patches. Search-based APR
techniques assume that most bugs could be solved by searching
through all the potential candidate patches based on certain patch-
ing rules (i.e., program-fixing templates) [14, 21, 29, 64]. Alterna-
tively, semantics-based techniques use deeper semantical analyses
(including symbolic execution [11, 25]) to synthesize program con-
ditions, or even more complex code snippets, that can pass all the
tests [40, 44, 69]. Recently, search-based APR has been extensively
studied due to its scalability on real-world systems, e.g., the most re-
cent PraPR technique has been reported to produce genuine patches
for 43 real bugs from Defects4J [23]. Despite the success of recent
advanced APR techniques, even the most recent program repair
technique can only fix a small ratio (i.e., <20% for Defects4J) of real
bugs [17, 21, 64] or specific types of bugs [38].
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Class: org.apache.commons.math.analysis.solvers.BracketingNthOrderBrentSolver
Method:protected double doSolve()
Developer patch:
233: if (agingA >= MAXIMAL_AGING) {
234: // ...
235: - targetY = -REDUCTION_FACTOR * yB;
236: + final int p = agingA - MAXIMAL_AGING;
237: + final double weightA = (1 << p) - 1;
238: + final double weightB = p + 1;
239: + targetY = (weightA * yA - weightB * REDUCTION_FACTOR * yB)

/ (weightA + weightB);
240: } else if (agingB >= MAXIMAL_AGING) {
241: - targetY = -REDUCTION_FACTOR * yA;
243: // ...
243: + final int p = agingB - MAXIMAL_AGING;
244: + final double weightA = p + 1;
245: + final double weightB = (1 << p) - 1;
246: + targetY = (weightB * yB - weightA * REDUCTION_FACTOR * yA)

/ (weightA + weightB);

Patch P4, generated by PraPR:
260: - if (signChangeIndex - start >= end - signChangeIndex) {
260: + if (MAXMAL_AGING - start >= end - signChangeIndex) {
261: ++start;
262: } else {
263: --end;
264: }

Patch P5, generated by PraPR:
317: - x[signChangeIndex] = nextX;
317: + x[agingA] = nextX;
318: System.arraycopy(y, signChangeIndex , y, signChangeIndex +

1, nbPoints - signChangeIndex);
319: y[signChangeIndex] = nextY;

Figure 1: Developer and generated patches for Math-40
Class: com.google.javascript.jscomp.NodeUtil
Method:static boolean functionCallHasSideEffects
Developer patch:
958: + if (nameNode.getFirstChild ().getType () == Token.NAME) {
959: + String namespaceName = nameNode.getFirstChild ().getString

();
960: + if (namespaceName.equals("Math")) {
961: + return false;
962: + }
963: + }

Patch P10, generated by PraPR:
933: - if (callNode.isNoSideEffectsCall ()) {
933: + if (callNode.hasChildren ()) {
934: return false;
935: }

Figure 2: Developer and generated patches for Closure-61

In this work, we aim to leverage program repair results to help
with fault localization. More specifically, we design, ProFL, a sim-
plistic feedback-driven fault localization approach guided by patch-
execution results (from program repair). Note that the recent work
PraPR [17] has briefly mentioned that plausible patches may po-
tentially help localize bugs. However, it does not present a system-
atic fault localization approach working for all possible bugs, and
was only demonstrated on a small number of bugs with plausible
patches. In contrast, we present the first systematic fault localiza-
tion approach driven by program repair results and perform the first
extensive study under various settings and on a large number of
real-world bugs. Feedback-driven fault localization techniques have
also been investigated before [32, 34]. However, existing feedback-
driven fault localization techniques usually require manual inspec-
tion to guide the debugging process. In contrast, we present a fully
automated feedback-driven fault localization, i.e., ProFL utilizes pro-
gram fixing attempts and corresponding patch-execution results as
feedback to enable powerful automated fault localization.

Table 1: Five top-ranked methods from Math-40
EID Method Signature SBFL PID #F (1) #P (3177)
e1 incrementEvaluationCount() 0.57 P1 1 3170
e2 BracketingNthOrderBrentSolver(Number) 0.33 P2 1 3172
e3 BracketingNthOrderBrentSolver(double, ...) 0.28 P3 1 3177

P4 0 3177
e∗4 doSolve() 0.27 P5 0 3169
e5 guessX(double[], ...) 0.20 P6 0 3176

Table 2: Five top-ranked methods from Closure-61
EID Method Signature SBFL PID #F (3) #P (7082)
e1 toString() 0.34 P7 3 7079
e2 getSortedPropTypes() 0.33 P8 3 6981
e3 toString(StringBuilder, ...) 0.27 P9 3 7042
e∗4 functionCallHasSideEffects(Node, ...) 0.18 P10 1 6681
e5 nodeTypeMayHaveSideEffects(Node, ...) 0.09 P11 1 6766

3 MOTIVATION EXAMPLES
In this section, we present two real-world bug examples to show
the limitations of the widely used SBFL fault localization and also
the potential benefits that we can obtain from program repair.

3.1 Example 1: Math-40
We use Math-40 from Defects4J (V1.2.0) [23], a widely used collec-
tion of real-world Java bugs, as our first example. Math-40 denotes
the 40th buggy version of Apache Commons Math project [4] from
Defects4J (V1.2.0). The bug is located in a single method of the
project (method doSolve of class BracketingNthOrderBrentSolver).

We attempted to improve the effectiveness of traditional SBFL
based on Ochiai formula [3], which has been widely recognized
as one of the most effective SBFL formulae [31, 48, 73]. Inspired
by prior work [59], we used the aggregation strategy to aggregate
the maximum suspiciousness values from statements to methods.
Even with this improvement in place, Ochiai still cannot rank the
buggy method in the top, and instead ranks the buggy method in
the 4th place (with a suspiciousness value of 0.27). The reason is
that traditional SBFL captures only coverage information and does
not consider the actual impacts of code elements on test behaviors.

In an attempt to fix the bug, we further applied state-of-the-
art APR technique, PraPR [17], on the bug. However, since fixing
the bug requires multiple lines of asymmetric edits, the genuine
patch is beyond the reach of PraPR and virtually other existing
APR techniques as well. Analyzing the generated patches and their
execution results, however, gives some insights on the positive
effects that an APR technique might have on fault localization.

Among a large number of methods in Math-40, Table 1 lists the
Top-5 most suspicious methods based on Ochiai. Each row corre-
sponds to a method, with the highlighted one corresponding to the
actual buggy method (i.e., doSolve). Column “EID” assigns an iden-
tifier for each method. Column “SBFL” reports SBFL suspiciousness
values for each method, and “PID” assigns an identifier for each
patch generated by PraPR that targets the method. Columns “#F”
and “#P” report the number of failing and passing tests on each
generated patch, respectively. The numbers within the parentheses
in the table head are the number of failing/passing tests on the
original buggy program. We also present the details of the devel-
oper patch for the bug and two patches generated by PraPR on the
buggy method in Figure 1. From the table, we observe that P4 is
a plausible patch, meaning that it passes all of the available tests
but it might be not a genuine fix; P5 passes originally failing tests,
while fails to pass 8 originally passing tests.
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Several observations can be made at this point: First, whether the
originally failing tests pass or not on a patch, can help distinguish
the buggy methods from some correct methods. For example, for
e1, e2 and e3, the originally failing test remains failing on all of
their patches, while for the buggy method e4, the originally failing
test becomes passing on both its patches. Second, whether the
originally passing tests fail or not, can also help separate the buggy
methods from some correct methods, e.g., P4 for the buggy method
e4 does not fail any originally passing tests while the patch for the
correct method e5 still fails some originally passing tests. Lastly,
the detailed number of tests affected by the patches may not matter
much. For example, for the correct method e5, its patch only fails
one originally passing test, but for the buggy method e4, patch P5
makes even more (i.e., 8) originally passing tests fail.

3.2 Example 2: Closure-61
We further looked into Closure-61, another real-world buggy project
from Defects4J (V1.2.0), but for which PraPR is even unable to gen-
erate any plausible patch. Similar with the first example, we present
the Ochiai fault localization information and PraPR repair results
for the Top-5 methods in Table 2.

Based on Table 2, we observe that even the non-plausible noisy
patch P10 is related to the buggy methods. The patches targeting
method getSortedPropTypes and the two overloading methods
of toString (which have higher suspiciousness values than that
of the buggy method functionCallHasSideEffects) cannot gen-
erate any patch that can pass any of the originally failing tests. In
addition, the fact that the number of passed tests which now fail in
the patches of the buggy method are much larger than that for the
correct method nodeTypeMayHaveSideEffects further confirms
our observation above that, the detailed impacted test number does
not matter much with the judgement of the correctness of a method.

Based on the above two examples, we have following implica-
tions to utilize the patch execution results to improve the original
SBFL: (1) the patches (no matter plausible or not) positively impact-
ing some failed test(s) may indicate the actual buggy locations and
should be favored; (2) the patches negatively impacting some passed
test(s) may help exclude some correct code locations and should
be unfavored; (3) the detailed number of the impacted tests does
not matter much for fault localization. Therefore, we categorize all
the patches into four different basic groups based on whether they
impact originally passed/failed tests to help with fault localization,
details shown in Section 4.

4 APPROACH
4.1 Preliminaries
In order to help the readers better understand the terms used
throughout this paper, in what follows, we attempt to define a
number of key notions more precisely.

Definition 4.1 (Candidate Patch). Given the original program Po ,
a candidate patch P can be created by modifying one or more pro-
gram elements withinPo . The set of all candidate patches generated
for the program is denoted by P.

In this paper, we focus on the APR techniques that conduct
only first-order program transformations, which only change one

Figure 3: Overview of ProFL

program element in each patch, such as PraPR [17]. Note that our
approach is general and can also be applied to other APR techniques
in theory, even including the ones applying high-order program
transformations.

Definition 4.2 (Patch Execution Matrix). Given a program Po , its
test suite T , and its corresponding set of all candidate patches P,
the patch execution matrix,M, is defined as the execution results
of all patches in P on all tests in T . Each matrix cell result,M[P, t],
represent the execution results of test t ∈ T on patch P ∈ P, and
can have the following possible values, {✓, ✗, ❍}, which represent
failed, passed, and unknown yet.

Note that for the ease of presentation, we also include the original
program execution results inM, i.e.,M[Po , t] denotes the execution
results of test t on the original program Po .

Based on the above definitions, we can now categorize candidate
patches based on the insights obtained from motivating examples:

Definition 4.3 (Clean-Fix Patch). A patch P is called a Clean-
Fix Patch, i.e., G[P] = CleanFix, if it passes some originally fail-
ing tests while does not fail any originally passing tests, i.e., ∃t ∈
T ,M[Po , t] =✗∧M[P, t] =✓, and ∄t ∈ T ,M[Po , t] =✓∧M[P, t] =✗.

Note that G[P] returns the category group for each patch P.

Definition 4.4 (Noisy-Fix Patch). A patch P is called a Noisy-
Fix Patch, i.e., G[P] = NoisyFix, if it passes some originally fail-
ing tests but also fails on some originally passing tests, i.e., ∃t ∈
T ,M[Po , t] =✗∧M[P, t] =✓, and∃t ∈ T ,M[Po , t] =✓∧M[P, t] =✗.

Definition 4.5 (None-Fix Patch). A patch P is called a None-Fix
Patch, i.e.,G[P] = NoneFix, if it does not impact any originally fail-
ing or passing tests. More precisely,∄t ∈ T ,M[Po , t] =✗∧M[P, t] =✓,
and ∄t ∈ T ,M[Po , t] =✓∧M[P, t] =✗.

Definition 4.6 (Negative-Fix Patch). ApatchP is called aNegative-
Fix Patch, i.e., G[P] = NegFix, if it does not pass any originally
failing test while fails some originally passing tests, i.e., ∄t ∈
T ,M[Po , t] =✗∧M[P, t] =✓, and∃t ∈ T ,M[Po , t] =✓∧M[P, t] =✗.

Based on our insights obtained from the motivating example,
the ranking of different patch groups is: CleanFix > NoisyFix >
NoneFix > NegFix. Note that in Section 4.3, we will discuss more
patch categorization variants besides such default patch categoriza-
tion to further study their impacts on ProFL.
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4.2 Basic ProFL
The overview of ProFL is shown in Figure 3. According to the figure,
ProFL consists of four different layers. The input for ProFL is the ac-
tual buggy program under test and the original failing test suite, and
the final output is a refined ranking of the program elements based
on the initial suspiciousness calculation. In the first layer, ProFL
conducts naive SBFL formulae (e.g., Ochiai [3]) at the statement
level, and then perform suspiciousness aggregation [59] to calculate
the initial suspiciousness value for each program element. Note
that besides such default initial suspiciousness computation, ProFL
is generic and can leverage the suspiciousness values computed
by any other advanced fault localization technique in this layer
(such as the PageRank-based fault localization [73]). In the second
layer, ProFL collects the patch execution matrix along the program
repair process for the program under test, and categorizes each
patch into different groups based on Section 4.1. In the third layer,
for each element, ProFL maps the group information of its corre-
sponding patches to itself via group aggregation. In the last layer,
ProFL finally reranks all the program elements via considering their
suspiciousness and group information in tandem.

We next explain each layer in details with our first motivation
example. Since the number of tests and patches are really huge,
due to space limitation, we only include the tests and patches that
are essential for the ranking results of the elements. After reduc-
tion, we consider the six patches (P1 to P6) and the 9 tests whose
statuses changed on these patches (denoted as t1 to t9). Based on
Definition 4.2, we presentM in Figure 3, The first row stands for
M[Po ,T], the execution results of T on the original buggy pro-
gram Po , and from the second row, each row representsM[P,T],
the execution results of each patch P as shown in Table 1 on T .

4.2.1 Layer 1: Suspicious Computation. Given the original program
statements, e.g., S = [s1, s2, ..., sn ], we directly apply an off-the-
shelf spectrum-based fault localization technique (e.g., the default
Ochiai [3]) to compute the suspiciousness for each statement, e.g.,
S[sj ] for statement sj . Then, the proposed approach applies sus-
piciousness aggregation [59] to compute the element suspicious-
ness values at the desired level (e.g., method level in this work)
since prior work has shown that suspicious aggregation can signif-
icantly improve fault localization results [9, 59]. Given the initial
list of E = [e1, e2, ..., em ], for each ei ∈ E, suspiciousness aggrega-
tion computes its suspiciousness as S[ei ] = Maxsj ∈ei S[sj ], i.e., the
highest suspiciousness value for all statements within a program
element is computed as the suspiciousness value for the element.

For our first motivation example, after suspicious aggregation,
for the five elements, S[e1, e2, e3, e4, e5] = [0.57, 0.33, 0.28, 0.27, 0.20].

4.2.2 Layer 2: Patch Categorization. In this layer, ProFL automati-
cally invokes off-the-shelf program repair engines (PraPR [17] for
this work) to try various patching opportunities and record the de-
tailed patch-execution matrix,M. Then, based on the resultingM,
ProFL automatically categorizes each patch into different groups.
Given program element e and all the patches generated for the
program, P, the patches occurring on e can be denoted as P[e].
Then, based on Definitions 4.3 to 4.6, each patch within P[e] for
each element e can be categorized into one of the four following
groups, {CleanFix, NoisyFix, NoneFix, NegFix}. Recall that G[P]

represents the group information for P, e.g., G[P] = CleanFix
denotes that P is a clean-fix patch.

For the example, the group of each patch in the motivation ex-
ample is as follows: G[P1,P2,P3,P4,P5,P6] = [NegFix, NegFix,
NoneFix, CleanFix, NoisyFix, NoisyFix]

4.2.3 Layer 3: Group Aggregation. For each program element e ,
we utilize its corresponding patch group information to determine
its own group information. Recall that the ranking of different
patch groups is: CleanFix>NoisyFix>NoneFix>NegFix. Then, the
group information for a program element can be determined by
the best group information of all patches occurring on the program
element. Therefore, we present the following rules for determining
the group information for each e:

G[e] =


CleanFix if ∃P, P ∈ P[e] ∧ G[P] = CleanFix

NoisyFix else if ∃P, P ∈ P[e] ∧ G[P] = NoisyFix

NoneFix else if ∃P, P ∈ P[e] ∧ G[P] = NoneFix

NegFix else if ∃P, P ∈ P[e] ∧ G[P] = NegFix

(1)
Shown in Equation 1, element e is within Group CleanFixwhen-

ever there is any patch P within e such that P is a clean-fix patch;
otherwise, it is within Group NoisyFixwhenever there is any patch
P within e such that P is a noisy-fix patch.

After group aggregation, the group of each program element
(i.e., method) in the motivation example is G[e1, e2, e3, e4, e5] =
[NegFix, NegFix, NoneFix, CleanFix, NoisyFix].

4.2.4 Layer 4: Feedback-driven Reranking. In this last layer, we
compute the final ranked list of elements based on the aggregated
suspiciousness values and groups. All the program elements will be
first clustered into different groups with Group CleanFix ranked
first and Group NegFix ranked last. Then, within each group, the
initial SBFL (or other fault localization techniques) suspiciousness
values will be used to rank the program elements. Assume we
use R[e1, e2] to denote the total-order ranking between any two
program elements, it can be formally defined as:

R[e1, e2] =


e1 ⪰ e2 if G[e1] > G[e2] or

G[e1] = G[e2] ∧ S[e1] ≥ S[e2]
e2 ⪰ e1 if G[e2] > G[e1] or

G[e1] = G[e2] ∧ S[e2] ≥ S[e21]

(2)

That is, e1 is ranked higher or equivalent to e2 only when (i) e1
is within a higher-ranked group, or (ii) e1 is within the same group
as e2 but has a higher or equivalent suspicious value compared to
e2. Therefore, the final ranking of our example is: e4 ⪰ e5 ⪰ e3 ⪰
e1 ⪰ e2, ranking the buggy method e4 at the first place.

4.3 Variants of ProFL
Taking the approach above as the basic version of ProFL, there can
be many variants of ProFL, which are discussed as follows.
Finer-grained Patch Categorization. Previous work [17] found
that plausible patches are often coupled tightly with buggy ele-
ments, which actually is a subset of CleanFix defined in our work.
Inspired by this finding, we further extend ProFL with finer-grained
patch categorization rules, which respectively divide CleanFix
and NoisyFix into two finer categories according to the criterion
whether all failed tests are impacted. We use Figure 4 to show the
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Figure 4: Patch categorization tree

relation between the four finer-grained patch categories and the
four basic categories. Considering the finer categories, we further
extend the group aggregation strategies in the third layer of ProFL
accordingly as shown in Table 3 to study the impact of further
splitting CleanFix and NoisyFix categories, e.g., R1 and R2 study
the two different rules splitting CleanFix.
SBFL Formulae. The elements are reranked in the last layer based
on their aggregated suspiciousness values and groups. In theory,
ProFL is not specific for any particular way to calculate the aggre-
gated suspiciousness value. Therefore, besides our default Ochiai [3]
formula, all the other formulae in SBFL can be adopted in ProFL.
We study all the 34 SBFL formulae considered in prior work [31, 59].
The impact of these formulae on ProFL would be studied later.
Feedback Sources. Generally speaking, not only the patch ex-
ecution results can be the feedback of our approach, any other
execution results correlated with program modifications can serve
as the feedback sources, e.g., mutation testing [20]. For example, a
mutant and a patch are both modifications on the program, thus
ProFL can directly be applied with the mutation information as
feedback. However, mutation testing often includes simple syntax
modifications that were originally proposed to simulate software
bugs to fail more tests, while program repair often includes more
(advanced) modifications that aim to pass more tests to fix software
bugs. Therefore, although it is feasible to use mutation information
as the feedback source of our approach, the effectiveness remains
unknown, which would be studied.
Partial Execution Matrix. During program repair, usually the
execution for a patch would terminate as soon as one test fails,
which is the common practice to save the time cost. In this scenario,
only partial execution results are accessible. In the previous sections,
M is considered as complete, which we denote as full matrix,Mf ,
while in this section, we discuss the case whereM is considered as
incomplete in practice, which we call a partial matrix,Mp . Recall
Definition 4.2, different fromMf , the cells inMp can be ❍ besides
✓ and ✗. For example, when t is not executed on P,Mp [P, t] =❍.

In the motivation example, during the patch execution, if T is
executed in the order from t1 to t9, and one failed test would stop
execution for each patch immediately,Mp is as follows.

Mp =



t1 t2 t3 t4 t5 t6 t7 t8 t9
Po ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

P1 ✗ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

P2 ✗ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

P3 ✗ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

P4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

P5 ✓ ✗ ❍ ❍ ❍ ❍ ❍ ❍ ❍

P6 ✓ ✗ ❍ ❍ ❍ ❍ ❍ ❍ ❍


(3)

In the scenario where only partial matrix is accessible, we can
find there are many unknown results. Interestingly, in this example,

Table 3: Finer-grained patch categorization rules
ID Extended Categorization Aggregation Rules
R1 CleanAllFix>CleanPartFix>NoisyFix>NoneFix>NegFix
R2 CleanPartFix>CleanAllFix>NoisyFix>NoneFix>NegFix
R3 CleanFix>NoisyAllFix>NoisyPartFix>NoneFix>NegFix
R4 CleanFix>NoisyPartFix> NoisyAllFix>NoneFix>NegFix

Table 4: Benchmark statistics
ID Name #Bug #Test LoC
Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Time Joda-Time 27 4,130 28K
Chart JFreeChart 26 2,205 96K
Closure Google Closure compiler 106 7,927 90K
Mockito Mockito framework 38 1,366 23K

Defects4J (V1.2.0) 395 21,475 344K

Cli Apcache commons-cli 24 409 4K
Codec Apache commons-codec 22 883 10K
Csv Apache commons-csv 12 319 2K
JXPath Apache commons-jxpath 14 411 21K
Gson Google GSON 16 N/A 12K
Guava Google Guava 9 1,701,947 420K
Core Jackson JSON processor 13 867 31K
Databind Jackson data bindings 39 1,742 71K
Xml Jackson XML extensions 5 177 6K
Jsoup Jsoup HTML parser 63 681 14K

Defects4J (V1.4.0) 587 26,964 503K

we find the final ranking does not change at all even with a partial
matrix as input. For the patches P3, P4, P5 and P6, their patch
categorization does not change at all. For example, since the failed
tests are executed first, when P5 stops its execution, its execution
result is that one failed test passes now and one passed test fails
now, and thus P5 is still categorized into NoisyFix. For P1 and
P2, although their patch categorization changes from NegFix to
NoneFix, it does not impact the final ranking results. The exam-
ple indicates the insensitivity of ProFL to partial matrix, and the
categorization design is the main reason for it. We would further
confirm this observation in the detailed experimental studies.

5 EXPERIMENT SET UP
5.1 Research Questions
In our study, we investigate the following research questions:

• RQ1: How does the basic ProFL perform compared with
state-of-the-art SBFL and MBFL techniques?

• RQ2: How do different experimental configurations impact
ProFL?
– RQ2a: What is the impact of finer patch categorization?
– RQ2b: What is the impact of the used SBFL formula?
– RQ2c: What is the impact of the feedback source used?
– RQ2d: What is the impact of partial execution matrix?
– RQ2e: What is the impact of the used benchmark suite?

• RQ3: Can ProFL further boost state-of-the-art unsupervised-
and supervised-learning-based fault localization?

5.2 Benchmark
We conduct our study on all bugs from theDefects4J benchmark [23],
which has been widely used in prior fault-localization work [30,
31, 48, 59, 73]. Defects4J is a collection of reproducible real bugs
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with a supporting infrastructure. To our knowledge, all the fault
localization studies evaluated on Defects4J use the original version
Defects4J (V1.2.0). Recently, an extended version, Defects4J (V1.4.0),
which includes more real-world bugs, has been released [19]. There-
fore, we further perform the first fault localization study on De-
fects4J (V1.4.0) to reduce the threats to external validity.

We present the details of the used benchmarks in Table 4. Column
“ID” presents the subject IDs used in this paper. Columns “Name”
and “#Bugs” present the full name and the number of bugs for each
project. Columns “Loc” and “#Test” list the line-of-code information
and the number of tests for the HEAD version of each project.
Note that the two projects highlighted in gray are excluded from
our evaluation due to build/test framework incompatibility with
PraPR [17]. In total, our study is performed on all 395 bugs from
Defects4J (V1.2.0) and 192 additional bugs from Defects4J (V1.4.0).

5.3 Independent Variables
Evaluated Techniques: We compare ProFL with the following
state-of-the-art SBFL and MBFL techniques: (a) Spectrum-based
(SBFL): we consider traditional SBFL with suspiciousness aggrega-
tion strategy to aggregate suspiciousness values from statements
to methods, which has been shown to be more effective than naive
SBFL in previous work [9, 59]. (b) Mutation-based (MBFL): we
consider two representative MBFL techniques, MUSE [42] and Met-
allaxis [46]. (c) Hybrid of SBFL and MBFL (MCBFL): we also
consider the recent MCBFL [48], which represents state-of-the-art
hybrid spectrum- and mutation-based fault localization. Further-
more, we also include state-of-the-art learning-based fault localiza-
tion techniques: (a) Unsupervised: we consider state-of-the-art
PRFL [73] and PRFLMA [74] (which further improves PRFL via
suspiciousness aggregation) that aim to boost SBFL with the un-
supervised PageRank algorithm. (b) Supervised: we further con-
sider state-of-the-art supervised-learning-based fault localization,
DeepFL [30], which outperforms all other learning-based fault lo-
calization [31, 59, 70]. Note that, SBFL and Metallaxis can adopt
different SBFL formulae, and we by default uniformly use Ochiai [3]
since it has been demonstrated to perform the best for both SBFL
and MBFL [31, 48, 73].
Experimental Configurations: We explore the following con-
figurations to study ProFL: (a) Finer ProFL Categorization: in
RQ2a, we study the four extended categorization aggregation rules
based on the finer patch categories as listed in Table 3. (b) Studied
SBFL Formulae: in RQ2b, we implement all the 34 SBFL formu-
lae considered in prior work [31, 59] to study the impact of initial
formulae. (c) Feedback Sources: besides the patch execution re-
sults of program repair, mutation testing results can also be used as
the feedback sources of ProFL. Thus, we study the impact of these
two feedback sources in RQ2c. (d) Partial Execution Matrix: we
collect partial execution matrices in three common test-execution
orderings: (i)O1: the default order in original test suite; (ii)O2: run-
ning originally-failed tests first and then originally-passing tests,
which is also the common practice in program repair to save the
time cost; (iii) O3: running originally-passing tests first and then
originally-failed tests. The partial matrices collected by these orders
are denoted asM(O1)

p ,M(O2)
p andM(O3)

p respectively. We investigate
the impacts of different partial execution matrices used in RQ2d.

(e) Used Benchmarks: we evaluate ProFL in two benchmarks,
Defects4J (V1.2.0) and Defects4J (V1.4.0) in RQ2e.

5.4 Dependent Variables and Metrics
In this work, we perform fault localization at the method level fol-
lowing recent fault localization work [5, 30, 31, 59, 73], because
the class level has been shown to be too coarse-grained while the
statement level is too fine-grained to keep useful context informa-
tion [27, 47]. We use the following widely used metrics [30, 31]:
Recall at Top-N: Top-N computes the number of bugs with at least
one buggy element localized in the Top-N positions of the ranked
list. As suggested by prior work [47], usually, programmers only
inspect a few buggy elements in the top of the given ranked list,
e.g., 73.58% developers only inspect Top-5 elements [27]. Therefore,
following prior work [30, 31, 73, 76], we use Top-N (N=1, 3, 5).
Mean First Rank (MFR): For each subject, MFR computes the
mean of the first relevant buggy element’s rank for all its bugs,
because the localization of the first buggy element for each bug can
be quite crucial for localizing all buggy elements.
Mean Average Rank (MAR):We first compute the average rank-
ing of all the buggy elements for each bug. Then, MAR of each
subject is the mean of such average ranking of all its bugs. MAR
emphasizes the precise ranking of all buggy elements, especially
for the bugs with multiple buggy elements.

Fault localization techniques sometimes assign same suspicious-
ness score to code elements. Following prior work [30, 31], we use
the worst ranking for the tied elements. For example, if a buggy
element is tied with a correct element in the kth position of the
ranked list, the rank for both elements would be k + 1th .

5.5 Implementation and Tool Supports
For APR, we use PraPR [17], a recent APR technique that fixes
bugs at the bytecode level. We choose PraPR because it is one of
the most recent APR techniques and has been demonstrated to be
able to fix more bugs with a much lower overhead compared to
other state-of-the-art techniques. Note that, ProFL does not rely on
any specific APR technique, since the feedback input (i.e., patch-
execution information) for our approach is general and can work
with any other APR technique in principle.

We now discuss the collection of all the other information for
implementing ProFL and other compared techniques: (i) To collect
the coverage information required by SBFL techniques, we use the
ASM bytecode manipulation framework [8] to instrument the code
on-the-fly via JavaAgent [1]. (ii) To collect the mutation testing
information required byMBFL, we use state-of-the-art PITmutation
testing framework [2] (Version 1.3.2) with all its available mutators,
following prior MBFL work [30, 31]. Note that we also modify
PIT to force it to execute all tests for each mutant and collect
detailed mutant impact information (i.e., whether each mutant can
impact the detailed test failure message of each test [48]) required
by Metallaxis. For PRFL, PRFLMA, and DeepFL, we directly used
the implementation released by the authors [30, 74].

All the experiments are conducted on a Dell workstation with In-
tel(R) Xeon(R) Gold 6138 CPU@ 2.00GHz and 330GB RAM, running
Ubuntu 18.04.1 LTS.
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Table 5: Overall fault localization results
Tech Name Top-1 Top-3 Top-5 MFR MAR
SBFL 117 219 259 19.15 24.63
MUSE 82 167 198 97.58 106.2
Metallaxis 94 191 244 14.28 16.93
MCBFL 132 227 268 17.98 23.24
ProFL 161 255 286 9.48 14.37

5.6 Threats to Validity
Threats to internal validity mainly lie in the correctness of im-
plementation of our approach and the compared techniques. To
reduce this threat, we manually reviewed our code and verified that
the results of the overlapping fault localization techniques between
this work and prior work [31, 73, 74] are consistent. We also directly
used the original implementations from prior work [30, 74].
Threats to construct validity mainly lie in the rationality of as-
sessment metrics that we chose. To reduce this threat, we chose
the metrics that have been recommended by prior studies/sur-
veys [27, 47] and widely used in previous work [30, 31, 59, 73].
Threats to external validity mainly lie in the benchmark suites
used in our experiments. To reduce this threat, we chose the widely
used Defects4J benchmark, which includes hundreds of real bugs
collected during real-world software development. To further re-
duce the threats, compared to previous work, we not only used
the original version of Defects4J, but also conducted the first fault
localization evaluation on an extended version of Defects4J.

6 RESULTS
6.1 RQ1: Effectiveness of ProFL
To answer this RQ, we first present the overall fault localization
results of ProFL and state-of-the-art SBFL and MBFL techniques
on Defects4J (V1.2.0) in Table 5. Column “Tech Name” represents
the corresponding techniques and the other columns present the
results in terms of Top-1, Top-3, Top-5, MFR and MAR. From the
table, we observe that ProFL significantly outperforms all the ex-
isting techniques in terms of all the five metrics. For example, the
Top-1 value of ProFL is 161, 29 more than MCBFL, 44 more than
aggregation-based SBFL, 67 more than Metallaxis, and 79 more
than MUSE. In addition, MAR and MFR values are also significantly
improved (e.g., at least 33.61% improvements for MFR compared
with all existing techniques), indicating a consistent improvement
for all buggy elements in the ranked lists. Note that we observe that
SBFL outperforms state-of-the-art MBFL techniques in terms of
Top-ranked bugs, which is not consistent with prior fault localiza-
tion work at the method level [31]. We find the main reason to be
that the prior work did not use suspicious aggregation (proposed in
parallel with the prior work) for SBFL. This further demonstrates
the effectiveness of suspiciousness aggregation for SBFL.

To further investigate why the simple ProFL approach works,
we further analyze each of the four basic ProFL patch categories in
a post-hoc way. For each patch category group Gi , for each bug in
the benchmark, we use metric Ratiob to represent the ratio of the
number of buggy elements (i.e., methods in this work) categorized
into group Gi to the number of all elements categorized into group
Gi . Formally, it can be presented as:

Ratiob (Gi ) =
|{e |G[P] = Gi ∧ P ∈ P[e]} ∧ e ∈ B|

|{e |G[P] = Gi ∧ P ∈ P[e]}| (4)
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Figure 5: Ratiob distribution for different patch groups
Table 6: Impacts of finer patch categorization

Tech Top-1 Top-3 Top-5 MFR MAR
ProFL 161 255 286 9.48 14.37
ProFLR1 162 255 286 9.53 (p=0.974) 14.41 (p=0.933)
ProFLR2 161 252 283 9.56 (p=0.904) 14.45 (p=0.876)
ProFLR3 161 255 285 9.67 (p=0.987) 14.62 (p=0.899)
ProFLR4 162 251 285 9.55 (p=0.949) 14.45 (p=0.967)

where B represents a set of buggy elements. Ratiob ranges from 0
to 1, and a higher value indicates a higher probability for a patch
group to contain the actual buggy element(s). We present the distri-
bution of the Ratiob values on all bugs for each of the four different
patch groups in the violin plot in Figure 5, where the x axis presents
the four different groups, the y axis presents the actual Ratiob val-
ues, and the width of each plot shows the distribution’s density.
From the figure we observe that the four different groups have to-
tally different Ratiob distributions. E.g., group CleanFix has rather
even distribution, indicating that roughly half of the code elements
within this group could be buggy; on the contrary, group NegFix
mostly have small Ratiob values, indicating that elements within
this group are mostly not buggy. Such group analysis further con-
firms our hypothesis that different patch categories can be leveraged
as the feedback information for powerful fault localization.

Finding 1: Simplistic feedback information from program
repair can significantly boost existing SBFL-based fault lo-
calization techniques, opening a new dimension for fault
localization via program repair.
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Figure 6: Comparison of ProFL and SBFL over all formulae

6.2 RQ2: Different experimental configurations
6.2.1 RQ2a: Impact of finer categorization. To investigate the four
extended rules on the finer categorization presented in Section 4.3,
we implemented different ProFL variants based on each rule in
Table 3. The experimental results for all the variants are shown in
Table 6. In the table, Column “Tech” presents each of the compared
variants and the remaining columns present the corresponding met-
ric values computed for each variant. Note that the four variants
of ProFL implemented with different rules shown in Table 3 are
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Table 7: Impacts of using mutation or repair information
Tech Name Top-1 Top-3 Top-5 MFR MAR
MUSEP IT 82 167 198 97.58 106.2
MUSEPraPR 95 172 207 38.79 43.1
MetallaxisP IT 94 191 244 14.28 16.93
MetallaxisPraPR 77 170 211 21.42 22.94
MCBFLP IT 132 227 268 17.98 23.24
MCBFLPraPR 130 228 267 18.03 23.28
ProFLP IT 141 238 266 15.24 20.33
ProFLPraPR 161 255 286 9.48 14.37

denoted as ProFLR1 , ProFLR2 , ProFLR3 and ProFLR4 , respectively.
From the table, we observe that ProFL variants with different ex-
tended rules perform similarly with the default setting in all the
used metrics. To confirm our observation, we further perform the
Wilcoxon signed-rank test [66] (at the significance level of 0.05)
to compare each variant against the default setting in terms of
both the first and average buggy-method ranking for each bug.
The test results are presented in the parentheses in the MFR and
MAR columns, and show that there is no significant difference
(p»0.05) among the compared variants, indicating that considering
the finer-grained grouping does not help much in practice.

Finding 2: Finer-grained patch grouping has no significant
impact on ProFL, further demonstrating the effectiveness of
the default grouping.

6.2.2 RQ2b: Impact of SBFL formulae. Our ProFL approach is gen-
eral and can be applied to any SBFL formula, therefore, in this RQ,
we further study the impact of different SBFL formulae on ProFL
effectiveness. The experimental results are shown in Figure 6. In
this figure, the x axis presents all the 34 SBFL formulae considered
in this work, the y axis presents the actual metric values in terms of
Top-1 andMAR, while the light and dark lines represent the original
SBFL techniques and our ProFL version respectively. We can ob-
serve that, for all the studied SBFL formulae, ProFL can consistently
improve their effectiveness. For example, the Top-1 improvements
range from 41 (for ER1a) to 87 (for GP13), while the MAR improve-
ments range from 36.54% (for Wong) to 77.41% (for GP02). Other
metrics follow similar trend, e.g., the improvements in MFR are
even larger than MAR, ranging from 49.24% (for SBI) to 80.47% (for
GP02). Furthermore, besides the consistent improvement, we also
observe that the overall performance of ProFL is quite stable for
different SBFL formulae. For example, the MAR value for SBFL has
huge variations when using different formulae, while ProFL has
stable performance regardless of the formula used, indicating that
ProFL can boost ineffective SBFL formulae even more.

Finding 3: ProFL can consistently improve all the 34 studied
SBFL formulae, e.g., by 49.24% to 80.47% in MFR.

6.2.3 RQ2c: Impact of feedback source. Since ProFL is general and
can even take traditional mutation testing information as feedback
source, we implement a new ProFL variant that directly take mu-
tation information (computed by PIT) as feedback. To distinguish
the two ProFL variants, we denote the new variant as ProFLP IT
and the default one as ProFLPraPR . Meanwhile, all the existing
MBFL techniques can also take the APR results from PraPR as in-
put (PraPR can be treated as an augmented mutation testing tool
with more and advanced mutators), thus we also implemented such

Table 8: Impacts of using partial matrices
Mp Tech Name Top-1 Top-3 Top-5 MFR MAR

M
(O1)
p

MUSEPraPR 92 148 172 118.56 125.11
MetallaxisPraPR 64 128 167 113.9 126.79
ProFL 165 254 287 15.46 20.96

M
(O2)
p

MUSEPraPR 87 130 152 191.71 206.0
MetallaxisPraPR 32 73 94 163.29 170.61
ProFL 169 252 285 9.17 15.15

M
(O3)
p

MUSEPraPR 89 128 144 169.33 174.09
MetallaxisPraPR 63 127 159 187.19 195.07
ProFL 158 244 278 19.07 25.25

variants for traditional MBFL for fair comparison, e.g., the original
MUSE is denoted as MUSEP IT while the new MUSE variant is de-
noted as MUSEPraPR . Table 7 presents the experimental results for
both ProFL and prior mutation-based techniques using different
information sources. We have the following observations:

First, ProFL is still the most effective technique compared with
other techniques evenwith the feedback information frommutation
testing. For example, ProFL with mutation information localizes
141 bugs within Top-1, while the most effective existing technique
(no matter using mutation or repair information) only localizes
132 bugs within Top-1. This observation implies that the ProFL
approach of using feedback information (from program-variant
execution) to refine SBFL ranking is general in design, and is not
coupled tightly with specific source(s) of feedback.

Second, ProFL performs worse when feedback source changes
from program repair to mutation testing. For example, the Top-1
decreases from 161 to 141. The reason is that patches within groups
CleanFix/NoisyFix can help promote the ranking of buggy meth-
ods. However, mutation testing cannot create many such patches.
For example, we find that the number of bugswith CleanFix/NoisyFix
patches increase by 40.0% when changing from mutation testing to
APR. This further indicates that APR is more suitable than mutation
testing for fault localization since it aims to pass more tests while
mutation testing was originally proposed to fail more tests.

Third, for the two existing MBFL techniques, MUSE performs
better in program repair compared to mutation testing while Met-
allaxis is the opposite. We find the reason to be that MUSE simply
counts the number of tests changed from passed to failed and vice
versa, while Metallaxis leverages the detailed test failure messages
to determinemutant impacts. In this way, APR techniques thatmake
more failed tests pass can clearly enhance the results of MUSE, but
do not have clear benefits for Metallaxis.

Finding 4: ProFL still performs well even with the mutation
feedback information, but has effectiveness decrements com-
pared to using program repair, indicating the superiority of
program repair over mutation testing for fault localization.

6.2.4 RQ2d: Impact of partial execution matrix. So far, we have
studied ProFL using full patch execution matrices. However, in
practical program repair, a patch will not be executed against the
remaining tests as soon as some test falsifies it for the sake of
efficiency. Therefore, we further study new ProFL variants with
only partial patch execution matrices. The experimental results for
three variants of ProFL using different partial matrices are shown
in Table 8. From the table, we have the following observations:
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Table 9: Collection time for full and partial matrices
Subject Timef Timep Reduced Time Reduced Ratio
Lang-1 0m38s 0m31s 0m7s 18.4%
Closure-1 2568m26s 110m33s 2457m53s 95.7%
Mockito-1 452m33s 2m43s 449m50s 99.4%
Chart-1 32m27s 2m41s 29m46s 91.7%
Time-1 149m14s 0m41s 148m33s 99.5%
Math-1 68m24s 7m53s 60m31s 88.5%
Total 3271m42s 125m2s 3146m40 96.2%

Table 10: Results on Defects4J (V1.4.0)
Tech Name Top-1 Top-3 Top-5 MFR MAR
SBFL 59 102 124 13.81 20.44
MUSE 42 75 82 53.97 60.17
Metallaxis 43 80 102 19.05 24.9
MCBFL 65 110 130 13.28 19.88
ProFL 78 117 131 12.01 17.96

First, surprisingly, ProFL with different partial matrices still per-
form similarly with our default ProFL using full matrices, while
the traditional MBFL techniques perform significantly worse us-
ing partial matrices. We think the reason to be that existing MBFL
techniques utilize the detailed number of impacted tests for fault
localization and may be too sensitive when switching to partial
matrices. Second, ProFL shows consistent effectiveness with par-
tial matrices obtained from different test execution orderings, e.g.,
even the worst ordering still produces 158 Top-1 bugs. One poten-
tial reason that M(O3)

p performs the worst is that if there is any
passed tests changed into failing, the original failed tests will no
longer be executed, missing the potential opportunities to have
CleanFix/NoisyFix patches that can greatly boost fault localiza-
tion. Luckily, in practice, repair tools always execute the failed tests
first (i.e.,M(O2)

p ), further demonstrating that ProFL is practical.
We next present the cost reduction benefits that partial execution

matrices can bring to speed up the ProFL fault localization process.
The experimental results for the HEAD version (i.e., the latest and
usually the largest version) of each studied subject are shown in
Table 9. In the table, Column “Timef ” presents the time for exe-
cuting all tests on each candidate patch, Column “Timep ” presents
the time for terminating test execution on a patch as soon as the
patch gets falsified (following the default test execution order of
PraPR, i.e., executing originally failed tests first then passed tests),
Columns “Reduced Time" and “Reduced Ratio” show the reduced
time and the reduction ratio from Timef to Timep . We use 4 threads
for executing both PraPR variants. From the table, we can observe
that partial execution matrix collection can overall achieve 96.2%
reduction compared to full matrix collection. Furthermore, using
partial execution matrices, even the largest Closure subject only
needs less than 2 hours, indicating that ProFL can be scalable to
real-world systems (since we have shown that ProFL does not have
effectiveness drop when using only partial matrices).

Finding 5: ProFL keeps its high effectiveness even on par-
tial patch execution matrices, especially with test execution
ordering following the program repair practice, demonstrat-
ing that its overhead can be reduced by 96.2% without clear
effectiveness drop.

6.2.5 RQ2e: Impact of used benchmarks. In this RQ, we further
compare ProFL and state-of-the-art SBFL/MBFL techniques on ad-
ditional bugs from Defects4J (V1.4.0), to reduce the threats to exter-
nal validity. The experimental results are shown in Table 10. From

the table, we observe that ProFL still significantly outperforms all
other compared techniques. E.g., Top-1 is improved from 59 to 78
compared to the original state-of-the-art SBFL. Such a consistent
finding on additional bugs further confirms our findings in RQ1.

Finding 6: ProFL still significantly outperforms state-of-the-
art SBFL and MBFL on additional bugs.

6.3 RQ3: Boosting learning-based localization
We further apply the basic ProFL to boost state-of-the-art unsupervised-
learning-based (i.e., PRFL and PRFLMA [74]) and supervised-learning-
based (i.e., DeepFL [30]) fault localization. For unsupervised-learning-
based techniques, ProFL is generic and can use any existing fault lo-
calization techniques to compute initial suspiciousness (Section 4.2);
therefore, we directly apply ProFL on the initial suspiciousness com-
puted by PRFL and PRFLMA, denoted as ProFLPRFL and ProFLPRFLMA,
respectively. For supervised-learning-based techniques, ProFL with
all the 34 used SBFL formulae can serve as an additional feature
dimension; therefore, we augment DeepFL by injecting ProFL fea-
tures between the original mutation and spectrum feature dimen-
sions (since they are all dynamic features), and denote that as
ProFLDeepFL . The experimental results are shown in Table 11. Note
that DeepFL results are averaged over 10 runs due to the DNN ran-
domness [30]. First, even the basic ProFL significantly outperforms
state-of-the-art unsupervised-learning-based fault localization. E.g.,
ProFL localizes 161 bugs within Top-1, while the most effective
unsupervised PRFLMA only localizes 136 bugs within Top-1. Sec-
ond, ProFL can significantly boost unsupervised-learning-based
fault localization. E.g., ProFLPRFLMA localizes 185 bugs within
Top-1, the best fault localization results on Defects4J without su-
pervised learning to our knowledge. Actually, such unsupervised-
learning-based fault localization results even significantly outper-
form many state-of-the-art supervised-learning-based techniques,
e.g., TraPT [31], FLUCCS [59], and CombineFL [76] only localize
156, 160, and 168 bugs from the same dataset within Top-1, re-
spectively [30, 76]. Lastly, we can observe that ProFL even boosts
state-of-the-art supervised-learning-based technique. E.g., it boosts
DeepFL to localize 216.8 bugs within Top-1, the best fault localization
results on Defects4J with supervised learning to our knowledge.

Finding 7: ProFL significantly outperforms state-of-the-art
unsupervised-learning-based fault localization, and can fur-
ther boost unsupervised and supervised learning based fault
localization, further demonstrating the effectiveness and gen-
eral applicability of ProFL.

Table 11: Boosting state-of-the-art PRFL
Tech Name Top-1 Top-3 Top-5 MFR MAR
PRFL 114 199 243 23.62 27.67
ProFLPRFL 179 251 288 10.44 14.83
PRFLMA 136 242 269 18.06 22.6
ProFLPRFLMA 185 264 295 9.04 13.73
DeepFL 211.0 284.5 310.5 4.97 6.27
ProFLDeepFL 216.8 293.6 318.0 4.53 5.88

7 CONCLUSION
We have investigated a simple question: can automated program
repair help with fault localization? To this end, we have designed,
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ProFL, the first approach that leverages program repair information
as the feedback for powerful fault localization. The experimental
results on the widely used Defects4J benchmarks demonstrate that
ProFL can significantly outperform state-of-the-art spectrum and
mutation based fault localization. Furthermore, we have demon-
strated ProFL’s effectiveness under various settings. Lastly, ProFL
even boosts state-of-the-art fault localization via both unsupervised
and supervised learning. In the near future, we will work on ten-
tative program repair, a new direction enabled by this research to
allow fault localization and program repair to boost each other for
more powerful debugging, e.g., patch execution results from an
initial program-fixing template set can enable precise fault local-
ization for applying later more advanced program-fixing template
set(s) later for cost-effective debugging.
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