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ABSTRACT

Learning-based fault localization has been intensively studied re-
cently. Prior studies have shown that traditional Learning-to-Rank
techniques can help precisely diagnose fault locations using vari-
ous dimensions of fault-diagnosis features, such as suspiciousness
values computed by various off-the-shelf fault localization tech-
niques. However, with the increasing dimensions of features con-
sidered by advanced fault localization techniques, it can be quite
challenging for the traditional Learning-to-Rank algorithms to au-
tomatically identify effective existing/latent features. In this work,
we propose DeepFL, a deep learning approach to automatically
learn the most effective existing/latent features for precise fault
localization. Although the approach is general, in this work, we col-
lect various suspiciousness-value-based, fault-proneness-based and
textual-similarity-based features from the fault localization, defect
prediction and information retrieval areas, respectively. DeepFL
has been studied on 395 real bugs from the widely used Defects4J
benchmark. The experimental results show DeepFL can signifi-
cantly outperform state-of-the-art TraPT/FLUCCS (e.g., localizing
50+ more faults within Top-1). We also investigate the impacts of
deep model configurations (e.g., loss functions and epoch settings)
and features. Furthermore, DeepFL is also surprisingly effective for
cross-project prediction.
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· Software and its engineering → Software testing and debug-
ging.
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1 INTRODUCTION

It has been reported that debugging software faults can take up to
80% of the total software cost for some projects [1]. Therefore, it is
essential to develop automated techniques to help reduce the man-
ual efforts during the software debugging process. In the literature,
various fault localization techniques [2ś10] have been proposed
to automatically localize potential faulty code locations. Fault lo-
calization techniques usually analyze various dynamic execution
information to compute the suspiciousness (i.e, probability to be
faulty) of each program element (such as statement or method).
Then, a ranked list of program elements (based on the descending
order of suspiciousness values) can be either provided to developers
for manual fixing or serve as the first step of automated program
repair [11ś17]. Please refer to a recent survey for more details [18].

Among the existing fault localization methodologies, spectrum-

based fault localization (SBFL) has been intensively studied due
to its lightweightness and effectiveness. Typical SBFL techniques
(such as Tarantula [19], Ochiai [20], DStar [21], Jaccard [5], Kul-
czynski2 [22]) simply apply statistical analysis on the coverage
data of failed/passed tests to compute the suspiciousness of code
elements. The basic intuition is that code elements executed by
more failed tests are more suspicious. Despite widely studied, SBFL
has clear limitations in design, i.e., elements executed by failed tests
may not have caused the test to fail and faulty elements may also be
executed by passed tests coincidentally. To bridge the gap,mutation-

based fault localization (MBFL) was proposed to mutate program
source code to check the actual impact of each code element on
the outcomes of tests [23ś26]. Typical MBFL techniques (such as
FIFL [27], Metallaxis [26] and MUSE [23]) first apply mutation test-

ing [28] to generate mutants for the original program under test.
Each mutant is exactly the same with the original program but with
one syntactic change based on the predefined rules (calledmutation

operators, such as changing if(a>b) into if(a<b)). Then, MBFL
techniques use mutants to check the impacts of code elements on
the test outcomes for precise fault localization.

Although MBFL techniques consider the impact information,
they may still perform poorly for some cases, e.g., some elements
may not have any mutant to simulate its impact [29]. Actually, to
date, there is no optimal fault localization technique that can per-
form the best for all cases. Therefore, recently, researchers started to
combine the strengths of various traditional fault localization tech-
niques via machine learning. Learning-to-Rank [30], a supervised
machine learning technique for solving ranking problems in the
field of information retrieval, has been widely used to combine the
suspiciousness values computed by various fault localization tech-
niques for more effective fault localization [8, 9, 29, 31]. In typical
Learning-to-Rank fault localization techniques, various suspicious-
ness values computed by different fault localization techniques
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are used as learning features and whether the element is faulty
is treated as the label information. E.g., MULTRIC [9] combines
various SBFL techniques via Learning-to-Rank, while TraPT [29]
combines SBFL and MBFL techniques via Learning-to-Rank.

Although Learning-to-Rank has been demonstrated to be effec-
tive for fault localization, it may not fully utilize the training data
information since it lacks the capability to automatically select exist-
ing powerful features and discover new advanced features. There-
fore, in this work, we propose DeepFL, a general deep-learning
approach to automatically identify or create the most effective
features for precise fault localization. DeepFL takes suspiciousness-
based features from the fault localization area (including both SBFL
and MBFL), fault-proneness-based features (e.g., code-complexity
metrics) from the defect prediction area [32] and textual-similarity-
based features from the information retrieval area [33]. We have
built various DeepFL techniques based on the TensorFlow frame-
work [34], including the basic Multi-layer Perceptron (MLP) and
Recurrent Neural Networks models, as well as our tailored model
variants considering the hierarchical connections between differ-
ent feature groups for deep fault localization (i.e., MLPDFL). To
evaluate DeepFL, we perform a study on 395 real software faults
from the widely used Defects4J benchmark (V1.2.0) [35]. The ex-
perimental results show that DeepFL can significantly outperform
state-of-the-art TraPT [29] and FLUCCS [31] (e.g., localizing 213
faults within Top-1, 50+ more than TraPT/FLUCCS). The study also
investigates the impacts of different deep model configurations and
features. The results reveal various interesting findings, including:
(1) deep models considering hierarchical feature group connections
can significantly outperform the traditional Learning-to-Rank algo-
rithms, while simply increasing deep learning layers does not help;
(2) the mutation-based features are the most important ones for
fault localization; (3) the softmax loss function is more stable than
the pairwise loss function for DeepFL. Finally, the study shows that
DeepFL can even perform precise fault localization for cross-project
prediction, indicating a promising future for deep-learning-based
fault localization. This paper makes the following contributions:

• DeepFL A deep-learning-based approach to predict poten-
tial faulty locations via incorporating various dimensions of
fault diagnosis information.

• Techniques A set of DeepFL techniques (implemented us-
ing TensorFlow) based on widely used neural networks (such
as MLP, RNN), and our tailored MLPDFL .

• Study An extensive study demonstrating the effectiveness
of DeepFL techniques on localizing real-world bugs as well
as investigating various configurations of DeepFL.

• Dataset An extensive fault localzation dataset for all 395
Defects4J V1.2.0 bugs, including 200+ unique dynamic or
static fault localization features for each program element
within each buggy version.

2 BACKGROUND AND RELATED WORK

2.1 Traditional Fault Localization

Spectrum-based Fault Localization. SBFL [2, 5, 19, 20, 22, 36ś
39] has been intensively studied in the literature. Although various
SBFL techniques have been proposed, they share the same basic
insight, i.e., code elements mainly executed by failed tests are more

suspicious. The input of SBFL is the coverage information of all
tests and the output is a ranked list of code elements (e.g., state-
ments or methods) according to their descending order of suspi-
ciousness values calculated by specific formulae. To date, various
SBFL techniques have been proposed, including Tarantula [40],
SBI [37], Ochiai [20] and Jaccard [5]. The calculation of these SBFL
techniques mainly rely on: (1) the set of all failed/passed tests, i.e.,
Tf /Tp , (2) the set of failed/passed tests executing code element e ,
i.e., Tf (e)/Tp (e), and (3) the set of failed/passed tests that do not
execute code element e , i.e., Tf (ē)/Tp (ē). For example, SBI formula
can calculate the suspiciousness value of one code element e as
Susp(e) = |Tf (e)|/(|Tf (e)|+|Tp (e)|). The objective of SBFL is to rank
the actual faulty elements as high as possible to save developers’
efforts in manually inspecting the ranked elements, or save the
CPU time during automated program repair [13ś15, 41ś44].
Mutation-based Fault Localization. MBFL [23ś27] aims to ad-
ditionally consider impact information for fault localization. Since
code elements covered by failed/passed tests may not have any im-
pact on the corresponding test outcomes, typical MBFL techniques
use mutation testing [28, 45, 46] to simulate the impact of each
code element for more precise fault localization. Here we mainly
discuss the general MBFL techniques since the regression MBFL
techniques (e.g., FIFL [27]) are not closely related to this work. The
first general MBFL technique, Metallaxis [24, 26] is based on the
following intuition: if one mutant has impacts on failed tests (e.g.,
the tests outcomes change after mutation), its corresponding code
element may have caused the test failures; similarly, if one mu-
tant has impacts on passed tests, its corresponding code element
may not be faulty (otherwise the passed tests would have failed).
Metallaxis treats mutants that have impacts on tests as elements
covered by the tests while the others as uncovered. Then it applies
traditional SBFL formulae to calculate the suspiciousness of each
mutant. Finally, the maximum suspiciousness value of mutants is
returned as the suspiciousness of their corresponding code element.
Assume formula SBI is used, the suspiciousness of mutant m is

Susp(m) = |T
(m)
f

(e)|/(|T (m)
f

(e)|+|T (m)
p (e)|), where |T (m)

f
(e)|/|T (m)

p (e)|

is the number of failed/passed tests impacted bym on element e .
The more recent MUSE [23] technique has similar insights: (1)

mutating faulty elements may cause more failed tests to pass than
mutating correct elements; (2) mutating correct elements may
cause more passed tests to fail than mutating faulty elements. In
MUSE, the suspiciousness of mutantm is computed as Susp(m) =

|T
(m)
f

(e)|/|Tf |−α ∗ |T
(m)
p (e)|/|Tp |, where Tp/Tf denotes the set of

originally passed/failed tests, andT (m)
f

(e)/T (m)
p (e) denotes the set of

originally failed/passed tests that have changed outcomes on mu-
tantm. α is a balancing weight and can be calculated as (f 2p/|Tf |)∗
(|Tp |/p2f ), where f 2p/p2f denotes the total number of failed/-
passed tests that changed outcomes during mutation.

2.2 Learning-Based Fault Localization

Learning-to-Rank is an application of supervised machine learning
for solving ranking problems in information retrieval [30]. In the
learning phase, Learning-to-Rank takes a group of training data as
input, and learns a ranking model by taking specific attributes of
documents and queries as different features, e.g., cosine similarity
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and proximity values. The ranking model is usually an optimal
combination of weights for different features. Then, in the rank-
ing phase, the ranking model is used to predict a ranked list of
documents by accepting a set of test data including new queries
and documents. Learning-to-Rank has three major categories of
approaches: (1) pointwise approach, (2) pairwise approach, and (3)
listwise approach. Pointwise indicates that each document in the
training data has its own label. Pairwise indicates that each pair of
two documents can be computed a label based on their ordering
for the given query. Listwise indicates that the order of a list of
documents is considered for prediction.

Recently, Learning-to-Rank has been applied to improve the ef-
fectiveness of spectrum-based fault localization [8, 9, 29, 31]. The
basic idea of Learning-to-Rank fault localization is to learn the
potential faulty locations via combining suspiciousness values com-
puted by various fault localization techniques (i.e., features). MUL-
TRIC [9] is the first Learning-to-Rank fault localization technique
to combine different suspiciousness values from SBFL. Later on,
researchers have also combined SBFL suspiciousness values with
other information, e.g., program invariant [8] or source code com-
plexity information [31], for more effective Learning-to-Rank fault
localization. TraPT [29] has been proposed to combine suspicious-
ness values not only from SBFL, but also from MBFL. More specifi-
cally, TraPT further extends Metallaxis and MUSE to have MBFL at
different test outcome levels. Recently, another independent work
also proposed to combine various different existing techniques via
Learning-to-Rank [47]. In all traditional Learning-to-Rank fault
localization techniques, pairwise approach is selected because fault
localization aims to rank faulty elements higher than correct ones,
and other relationships within faulty or correct elements are not
considered. Formally, assume xe denotes the corresponding train-

ing feature vector for element e , then the ith feature value of e is x(i )e
(i = 1, 2, ...n). A Learning-to-Rank algorithm can learn the weight

for each feature of e asW(i )
e (i = 1, 2, ...n), and the new combined

suspiciousness value of element e can be calculated as: ŷe = W⊤
e xe .

Then the code elements can be ranked according to new suspicious-
ness values, and the loss function can be defined as the number of
incorrectly rankings: L =

∑
⟨e+,e− ⟩ ∥ ŷe+ ≤ ŷe− ∥, where e+ and

e− denote any pair of faulty and correct code elements.
Actually, various other machine learning techniques, and even

neural networks have also been applied to fault localization [48ś
51]. However, those techniques mainly work on the test coverage
information, which has clear limitations (e.g., it cannot distinguish
elements accidentally executed by failed tests and the actual faulty
elements) [29], and are usually studied on artificial faults or small
programs. In contrast, DeepFL is the first deep-learning-based ap-
proach to incorporate various dimensions of fault diagnosis infor-
mation, and has been studied on real faults of real-world projects.

3 APPROACH

In this section, we discuss the basic ideas of the used deep learning
models, as well as howwe apply them to DeepFL (Section 3.1). Then
we introduce the features used in DeepFL (Section 3.2). Finally, we
discuss about the DeepFL loss functions (Section 3.3).

Function Formula Range

sigmoid(z) 1
1+e−z (0,1)

tanh(z) 1−e−2z

1+e−2z
(-1,1)

ReLU(z) max (0, z) [0,∞)

softmax(z(i )) ez
(i )

Σl
j=1e

z(j )
(0,1)

Figure 1: Activation func.
Input	Layer
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Figure 2: MLP

3.1 Deep Learning for Fault Localization

Previous fault localization techniques (such as MULTRIC [9], Sa-
vant [8], FLUCCS [31], and TraPT [29]) all utilized the Learning-to-
Rank algorithms to predict potential fault locations based on various
fault diagnosis features (shown in Section 3.2). However, traditional
machine learning techniques (including Learning-to-Rank) largely
rely on existing features, and cannot discover new latent features
for more effective learning. Furthermore, it is also important to
identify the most important features for effective fault localization
with the increasing number of features. Recently, deep learning has
demonstrated its superiority in feature engineering (i.e., including
selecting useful existing features and learning latent features), and
has been widely used to solve software engineering problems, such
as defect prediction [32] and requirements traceability [52]. Deep
learning [53] is the application of artificial neural network (ANN)
with hidden layers to solve machine learning tasks. Backpropaga-
tion [54] is widely used for training and adjusting ANN internal
weights to better compute the representation in each layer. In this
section, we will introduce how we adapt the traditional MLP [55]
and RNN networks [56] for fault localization; lastly, we will also
present our tailored MLP models for deep fault localization.

3.1.1 Multi-Layer Perceptron. Multi-layer Perceptron (MLP) is a
basic class of feedforward ANNs which indicates that the network
does not have any loop and the output of each node does not
affect the node itself [57]. MLP is a supervised learning algorithm
that learns a function f mapping from Rn to Rl by training a
dataset which includes n features and l labels. It can learn a non-
linear function approximator for either classification or regression
problem. Assume that there is a set of training data D={(x1, y1),
(x2, y2), ... , (xm , ym )}, where xi ∈ Rn and yi ∈ Rl , and one hidden
layer with k nodes, the function that MLP learns is as following:

f (x) = σo (W
⊤
ho

∗ σh (W
⊤
ih

∗ x + bh ) + bo ) (1)

whereW ih ∈ Rn×k represents the weights between input layer
and hidden layer andW ho ∈ Rk×l represents the weights between
hidden layer and output layer. bh ∈ Rk and bo ∈ Rl represent
the bias of hidden layer and output layer, respectively. σh and σo
represents the activation functions (such as tanh, ReLU, sigmoid,
and softmax) for the hidden layer and output layer, respectively.
Figure 1 (where z(i ) presents the ith dimension of vector z) presents
the definitions for four widely used activation functions in neural
networks. Usually, tanh, ReLU, and sigmoid can be used as hidden
layer activation function, while softmax can be used as the output
layer activation function for multi-class classification problems. To
illustrate, Figure 2 shows a classic MLP with one input layer, one
hidden layer and one output layer.

For our study of fault localization using MLP, we directly feed
our training data to MLP and use the MLP output information to
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Figure 3: Standard RNN (left) and its unfolded structure

rank suspicious program elements. Note that our training labels
can only be buggy or correct, thus we have two possible output
classes, i.e., the number of output layer nodes (i.e., l) is always 2.
Therefore, we use the softmax function to determine the probability
of a program element being buggy. Given m program elements,
each with feature set xi (i ∈ [1,m]), prediction results ŷi is:

ŷi = f (xi ) = (Pr [yi = (1, 0)], Pr [yi = (0, 1)]) (2)

where yi = (1, 0) denotes that the output belongs to the first output
class (e.g., buggy class), while Pr [.] denotes the probability func-

tion. Therefore, the first element for ŷi (i.e., ŷ
(1)
i ) represents the

probability of the element being buggy.

3.1.2 Recurrent Neural Network. Recurrent Neural Network (RNN)
is widely used in Natural Language Processing [56]. The primary
difference between RNN and other deep learning models is that
RNN considers the time-evolving state. Figure 3 shows a classic
structure of RNN and a fully unfolded network. łUnfoldedž means
that the network is represented as the complete sequence. For
example, if the input is a sentence of 5 words, the network would
be unfolded into 5-layer. In this figure, xt is the input and ht is
the output at time state t . Assume, the input layer has n nodes and
the hidden layer has k nodes, ht can be calculated based on the
previous hidden output ht−1 and the input at the current state:

ht = tanh(W ⊤xt +Uht−1 + b) (3)

whereW ∈ Rn×k , U ∈ Rk×k and b ∈ Rk represent the weight
matrices and bias vector.

However, standard RNN has a primary disadvantage that the
ability of network may downgrade due to vanishing gradient [58].
To overcome this disadvantage, a variant of RNN called Long Short
Term Memory (LSTM) was introduced [59] to preserve long-term
dependencies. The basic idea of LSTM is that a memory cell vec-
tor is introduced to preserve its state over time. The memory cell
consists of an explicit memory and gating units which can control
the information flow into and out of the memory. LSTM uses input
gates to control what new information is added to cell state from
current input, forget gates to control what information to throw
away from memory, and output gates to decide what information
to output from the memory. The state of each gate is decided by xt
and ht−1. The state of forget and input gates can be calculated as:

ft = sigmoid(W⊤
f
xt + Uf ht−1 + bf )

it = sigmoid(W⊤
i xt + Uiht−1 + bi )

(4)

To update the information in the memory cell, a memory can-
didate vector c̃t is firstly calculated. Then, the cell state vector
aggregates old memory via the forget gate and new memory via
the input gate, to update its information (Hadamard product ◦ is
used to control the information passing the gates):

c̃t = tanh(W⊤
c xt + Ucht−1 + bc )

ct = ft ◦ ct−1 + it ◦ c̃t
(5)

RNN

Unit 1

RNN

Unit 2
…

RNN

Unit n

FeaGroup-1 FeaGroup-2 FeaGroup-n

Input

Features

Normalized

Vectors

RNN

Network

Suspiciousness Calculation (Softmax)
Integration

Layer

Figure 4: Fault localization architecture via RNN

Finally, LSTM calculates its output ht based on output gate state:

ot = sigmoid(W⊤
o xt + Uoht−1 + bo )

ht = ot ◦ tanh(ct )
(6)

When performing learning-based fault localization, we found
that similar features may provide fault diagnosis information from
the same dimension or information source. For example, all the
suspicious values computed by spectrum-based fault localization
techniques try to provide fault diagnosis information from the ex-
ecution dimension, while all the code-based metric values try to
provide fault diagnosis information from the code complexity di-
mension. Therefore, we can group all the available features into
different groups based on their information sources. Then, the fea-
tures in the same group can be processed together first to provide
the most useful fault diagnosis information from that information
source. Finally, the fault diagnosis information from different in-
formation sources can be further linked together to provide the
final fault diagnosis supports. Actually, RNN with LSTM is a nat-
ural choice ś different feature groups can be treated as inputs for
different time steps in RNN; different feature groups can also be
linked together via the shared time state to provide the final out-
put. Figure 4 presents our network architecture of the deep fault
localization technique via RNN. Shown in the figure, the inputs
are the original features of each instance program element. Shown
in Section 3.2, the 7 different feature groups of DeepFL can have
different sizes, while RNN requires inputs for different time steps to
have the same shape. Therefore, each feature group is normalized to
have the same length as the largest feature group via zero padding.
Then, the normalized feature groups can be represented as a set of
vectors with uniform length, which can be directly fed into RNN
for deep fault localization. By design, each RNN unit will compute
the current feature group information while also considering the
earlier feature groups. Then, the output of the last RNN unit actu-
ally integrates all the information learnt from all the feature groups.
Finally, the output of the last RNN unit will go through the last
integration layer to compute the final suspiciousness value for the
program element. Assume each RNN unit has r hidden nodes, then
the output of the last RNN unit for input xi can be represented as
zi ∈ R

r , and the final prediction results can be computed as:

ŷi = softmax(W ⊤zi + b) (7)

whereW ∈ Rr×2, b ∈ R2 since there are only two final output
nodes (i.e., denoting buggy or correct).

3.1.3 Tailored MLP Based Neural Network. The classic MLP model
introduced in Section 3.1.1 treats all the feature groups uniformly;
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the hidden and output layers then compute the final prediction re-
sults via connecting all the feature groups. Such models may incur
a huge number of weights (for connecting all the feature groups via
fully-connected layers) to be trained, making the model training
expensive and inferior. In fact, as discussed in Section 3.1.2, different
feature groups contain different dimensions of debugging informa-
tion, and can be processed separately first and then connected later
to save the number of weights. Indeed, the RNN model discussed in
Section 3.1.2 actively considered feature group information and can
greatly reduce the number of weights. However, the RNN model
has two clear drawbacks: (1) all the feature groups have to share the
same weights based on the native design of RNN, while different
feature groups contain different debugging information and should
not be processed in the same way; (2) the RNN model is quite in-
flexible and can only take a set of plain feature groups and treat
them uniformly, while different feature groups may share some
hierarchical relationships (explained in more details in the next
paragraph). Therefore, besides the commonly used deep learning
structures, in this section we also design variants of the classic MLP
model tailored for DeepFL, which we called MLPDFL .
MLPDFL

(1). Figure 5 shows the network architecture of the ba-
sic variant, called MLPDFL

(1). As shown in the figure, each fea-
ture group is first connected with its own fully-connected layer
to compute and extract the useful debugging information within
this particular group. Then, the extracted debugging information
for each group are concatenated together to construct a complete
layer. This new complete layer can be viewed as the new hidden
layer. Note that each node within this new hidden layer is only
connected to the nodes within its corresponding feature group,
while each node within the hidden layer of the traditional MLP is
connected with nodes from all feature groups. In this way, a lot of
unnecessary edges (and thus weights) can be reduced. Finally, the
fully-connected layer is connected to the output layer to perform
the prediction. Formally, the computation of MLPDFL

(1) is:

ht = σth (W
⊤
th

∗ xt + bth )

g = [h1, h2, ...hn]

f ([x1, x2, ...xn]) = σo (W
⊤
ho

∗ g + bo )

(8)

where xt ∈ Rmt represents the t th feature group (mt is the number
of features within this group), while ht ∈ Rkt represents the single
fully-connected layer connected with the tth feature group (kt is
the number of nodes of the fully-connected layer). n represents the
number of the feature groups (e.g., 7 for Figure 5). g represents the
complete fully-connected layer and f represents the final output.
W

⊤
th

∈ Rmt×kt represents the weights between input layer and

fully-connected layer of t th feature group.W ⊤
ho

∈ R(
∑n
t=1 kt )∗l rep-

resents the weights between complete fully-connected layer and
output layer (l is the number of labels). bth represents the bias of
the fully-connected layer of tth feature group and bo represents
the bias of the output layer. σth and σo represents the activation
functions for the fully-connected layer of tth feature group and
output layer, respectively.
MLPDFL

(2). Note that some feature groups may share similar in-
formation and can also be connected earlier before connecting with
all other feature groups. E.g., the four groups of mutation-based de-
bugging information (shown in Section 3.2) are close to each other

Figure 5: Basic MLPDFL
(1)

Figure 6: More advanced MLPDFL
(2)

and should be merged first; also, the merged mutation information
is more similar to the spectrum-based feature group (since they
are both dynamic execution-based debugging information), and
should also be merged before merging with other groups. Therefore,
we further design another advanced variant (called MLPDFL

(2))
by concatenating the single fully-connected layers of similar fea-
ture groups first. Figure 6 shows the architecture of MLPDFL

(2).
For example, instead of connecting fully-connected layers of all
feature groups, this mode first concatenates the fully-connected
layers of feature groups x4 to x7 (assuming they correspond to
the 4 mutation-based groups). Then, the extracted mutation-based
information is further combined with the spectrum-based feature
group (i.e., x3) since they both belong to dynamic-execution-based
information. Lastly, the useful extracted dynamic-execution-based
information is further concatenated with the rest two static feature
groups. The motivation of the advancedMLPDFL

(2) variant is that it
can dig more helpful and hidden debugging information in a hierar-
chical way before constructing the complete fully-connected layer,
similar to the idea of the traditional Convolutional Neural Network
(CNN) [60]. We omit the equations for the advanced variant since
it can be easily inferred from Equation (8).

3.2 DeepFL Features

Existing learning-based fault localization studies [8, 9, 29, 31] have
demonstrated that suspiciousness values computed from various
traditional fault localization techniques can provide useful guide-
lines for localizing the buggy program elements. Recently, Li et
al. [29] showed that combining spectrum-based andmutation-based
suspiciousness values can achieve the best fault localization results.
Although suspiciousness-based features are effective, they only
consider the runtime correlation between program elements and
the failed/passed tests. Actually, the fault-proneness of the pro-
gram elements can also be useful for fault localization [31]. E.g.,
despite two program elements have equivalent suspiciousness val-
ues, one may still have higher probability to be faulty since it is
simply more fault-prone (e.g., more complex). In addition, textual
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similarity information from the information retrieval area can be
used as another feature dimension because it can reflect the textual
relevance between source code and failed tests. Thus, we include
all above feature dimensions in our DeepFL general framework.
Spectrum-based Suspiciousness. Xuan and Monperrus firstly
proposed MULTRIC [9] to learn faulty locations based on suspi-
ciousness values computed by 25 traditional spectrum-based fault
localization techniques, such as Jaccard [5], Ochiai [20], Ochiai2 [22],
and Kulczynski2 [22]. Recently, Xie et al. [61] found that some
manually-created spectrum-based formulae (such as ER1a and ER5c)
can perform extremely well on single-fault programs in theory. In
addition, Xie et al. [62] also generate a set of optimal spectrum-
based formulae via genetic programming (GP). Following recent
learning-based fault localization work [8, 29, 31], we use all the
above mentioned formulae to collect the suspiciousness-based fea-
tures. In total, we have the same 34 SBFL features as TraPT [29] (the
duplicated formulae among prior work [9, 61, 62] were removed).
Mutation-based Suspiciousness. The recent TraPT work [29] by
Li et al. firstly use suspiciousness values computed by MBFL tech-
niques to perform learning-based fault localization, and demon-
strate that they can significantly boost fault localization results.
In that work, both existing general MBFL techniques (i.e., Metal-
laxis [26] and MUSE [23]) are used. Since Metallaxis uses traditional
spectrum-based formulae, 34 Metallaxis variants are used based
on the 34 used spectrum-based formulae. Furthermore, the TraPT
work firstly shows that MBFL techniques can perform differently
using different types of failure outputs/messages on different faulty
programs. The reason is that different number of tests are com-
puted as impacted based on different levels of test outcomes. For
example, when a test t changes its exception type on a mutant
m, t can be treated as impacted bym when using exception type
information as test outcomes, while not impacted bym when using
only pass/fail information as test outcomes (since t fails both be-
fore and afterm). Therefore, TraPT further considers MBFL results
with the following four different types of test outcomes: (1) Type1:
pass/fail information, (2) Type2: exception type information, (3)
Type3: exception type and message, and (4) Type4: exception type,
message, and the full stack trace information. Note that we do not
use the assertion-level information since it is not applicable to all
programs, but DeepFL is general and can easily include it in the
future. In total, we implement 34 Metallaxis variants and MUSE
at each of the four test outcome types studied in TraPT, yielding
(34 + 1) × 4 = 140 suspiciousness values.
Complexity-based Fault Proneness. In the literature, code com-
plexitymetrics have beenwidely used to estimate the fault-proneness
of code elements in the field of defect prediction [32, 63ś65]. Code
metrics can measure various software characteristics to reveal qual-
ity information. For example, Cyclomatic Complexity measures
the number of linearly independent paths within the underlying
program elements, and a program element with more indepen-
dent paths may have high probability to be faulty; Halstead Dif-
ficulty [66] measures the difficulty to write or understand (e.g.
when doing code review) the underlying code elements, and it can
be harder to test/verify a program element that is more difficult
to write or review. Recently, code metrics have been utilized to
learning-based fault localization [31]. However, only three types
of code complexity metrics (number of formal arguments, local

Table 1: Studied code metrics

So
u
rc
e
C
od

e

Number of Class Casts Number of Operators Cyclomatic Complexity
Number of Statements Halstead Bugs Total Depth of Nesting
Halstead Difficulty Number of Variable Declarations Halstead Effort
Number of Variable References Halstead Length Halstead Vocabulary
Halstead Volume Number of Loops Max Depth of Nesting
Number of Operands Number of Java Expressions Lines of Code
Number of Arguments Number of Comments Number of Comment Lines

B
yt
ec
od

e

Number of Frame Number of Insn Number of VarInsn
Number of TypeInsn Number of FieldInsn Number of MethInsn
Number of IntInsn Number of InvokeDynamicInsn Number of JumpInsn
Number of LabelInsn Number of LdcInsn Number of IincInsn
Number of TableSwitchInsn Number of LookupSwitchInsn Number of MultiANewArrayInsn
Number of TryCatchBlock

variables, and statements/instructions) were used. In addition, the
code complexity metrics were always applied together with change
history information, making prior work only applicable to a subset
of projects. To fully evaluate the effectiveness of code complexity
metrics for fault localization, we collect all the 21 widely-used code
complexity metrics (shown in Table 1) for the method level (since
DeepFL works at the method level). In addition, we also collect
the statistics for each type of Java ASM [67] bytecode instructions
shown Table 1. In total, we have 37 complexity-based features.
Textual Similarity Information. Besides various suspiciousness
and fault-proneness information, information retrieval (i.e.,IR) tech-
niques have also been applied for bug localization [33, 68ś71].
Such IR-based techniques investigate the textual similarity between
source files and bug reports, treating each bug report as a query and
the source files to be searched as a document collection. Then such
techniques can return a ranked list of candidate source files based
their predicted relevance with bug reports. However, in practice,
bug reports are not always available, thus limiting the applications
of the IR-based techniques. In this work, inspired by the idea of
IR-based techniques, we investigate the textual similarity between
source code methods and failed test information. Similar with the
structured information retrieval work [69], we also collect different
fields for both queries and documents. Query fields come from failed
tests, including the name of failed tests, the source code of failed
tests and the complete failure message (including exception type,
message, and stacktrace). Document fields come from source code
methods, including: the full qualified name of the method, accessed
classes,method invocations, used variables, and comments. Each field
of query can be searched on each field of document, yielding 15
combinations. For each combination, we calculate the similarity
score between the query field and the document field by using the
popular TF.IDF model [72, 73]. Then, we treat the similarity scores
of the 15 combinations as 15 features for our DeepFL. For example,
Figure 7 shows the buggy method, failed test and failure message
of our subject Lang-3. From this simple example, we can find that
multiple occurrences of words łcreatež,łnumberž and łcreatenum-
berž can be extracted from both the failed test (including failure
message) and the buggy method. In this case, the similarity score
between them is high based on the IR techniques, which can further
help improve the effectiveness of fault localization.

3.3 DeepFL Loss Function

Loss functions guide the learning process towards certain goals and
are essential for DeepFL. The pairwise function has been widely
used for the traditional Learning-to-Rank, thus we also adapt it for
our DeepFL. We also use the cross-entropy function [74] since it has
been widely used in deep learning based classification problems.

174



DeepFL: Integrating Multiple Fault Diagnosis Dimensions for Deep Fault Localization ISSTA ’19, July 15–19, 2019, Beijing, China

Figure 7: Textual similarity example from Lang-3

Pairwise.According to prior Learning-to-Rank work [75], the pair-
wise loss function which can be defined as:

L(θ ) =
n−1∑

s=1

n∑

i=1,yi<ys

ϕ(z) +
λ

2
∥θ ∥22 (9)

where z = ŷs − ŷi and the function ϕ can be (1−z)+ (hinge function),
e−z (exponential function) or loд(1 + e−z ) (logistic function). ys or
yi denotes the label vector, and ŷs or ŷi denotes the prediction
result for the sth and ith instance.
Cross-entropy. Since we transfer the fault localization problem
into classification problem using MLP and RNN, we also use the
widely used cross-entropy loss function for our approach. The cross-
entropy loss function form instances can be computed as:

L(θ ) = −
1

m

m∑

i=1
(y(1)i log ŷ(1)i + y

(2)
i log ŷ(2)i ) +

λ

2
∥θ ∥22 (10)

where y(1)i denotes the first element in vector y.
In the above loss functions, θ is the parameters involved in train-

ing the neural networks. λ
2 ∥θ ∥

2
2 denotes the L2-Regularization,

which has been widely used to penalize complex models to reduce
overfitting. λ is a hyperparameter that controls the magnitude of
the penalty. Based on a certain loss function, various optimizer
methods can be used to update the network parameters to min-
imize the loss, such as Stochastic Gradient Descent (SGD) [76],
Nesterov Accelerated Gradient (NAG) [77], and Adaptive Moment
Estimation (Adam) [78]. We use the Adam optimizer since it is a
recent advanced optimizer handling both sparse gradients and non-
stationary objectives well. Furthermore, Adam has been shown to
work well in practice and converge faster than others [78].

4 EXPERIMENTAL SETUP

This work investigates the following research questions:

• RQ1: How does DeepFL perform in localizing real faults
compared with state-of-the-art techniques?

• RQ2: How do different DeepFL architectures and different
feature dimensions impact the DeepFL effectiveness?

• RQ3: How do different epochs and loss functions impact
DeepFL results?

• RQ4:How does DeepFL perform in cross-project prediction?

To investigate the RQs, we use the Defects4J benchmark [35]
that has been widely used in software testing research [8, 12, 13,
29, 31, 79]. We use all the 6 Defects4J V1.2.0 subjects, totalling 395
real faults detected during actual software development.

4.1 Implementation Details

Spectrum-based Features.We implement all the 34 spectrum-
based fault localization formulae (Section 3.2) in Java. To collect
coverage information required by SBFL, we perform on-the-fly
bytecode instrumentation using ASM [67] and Java Agent [80].
Mutation-based Features. Following TraPT, wemodify thewidely
used PIT [81] mutation testing tool (Version 1.1.5) to implement
Metallaxis and MUSE: (1) we enable PIT on programs with failed
tests by disabling the PIT isgreen check, (2) we force PIT to exe-
cute each mutant against the remaining tests after the mutant is
killed by earlier tests, (3) we enable PIT to further capture detailed
test outputs/messages (i.e., exception types, exception messages,
and stack traces) via overriding onTestFailure(). Same with
TraPT, we used all the 16 mutation operators available in PIT-1.1.5.
Complexity-based Features. For complexity-based features, we
use Jhawk [82] to collect all the 21 source code metrics at the
method level by parsing generated XML files. We also use the
ASM bytecode manipulation framework to collect 16 bytecode
metrics by overriding the method instruction visitor methods, such
as visitTypeInsn, and visitFieldInsn.
Textual-based Features. For textual-similarity-based features, we
use Indri [83] (version 5.11), a search engine that provides state-
of-the-art text search and a structured query language for text
collections, to generate the 15 types of similarity scores between
source code methods and failed tests. We follow similar configura-
tion with prior work [69], e.g., keeping both full and split tokens
during camel case splitting, setting the baseline method as tfidf,
and setting parameters k1 and b as 1 and 0.3, respectively.
Learning Techniques.We build DeepFL models based on Tensor-
Flow [34] (Version 1.5.0), one of the most widely used deep learning
frameworks. For MLP, we implement two variants, one with one
hidden layer and one with two hidden layers. For RNN, we imple-
ment Bidirectional RNN (BiRNN) with LSTM.While standard RNNs
have restrictions as the future input information cannot be reached
from the current state, BiRNNs allow future input information to be
reachable from the current state. Lastly, we implement two variants
of MLPDFL ś (1) the basic MLPDFL

(1) that treats all 7 groups of
features uniformly, and (2) the hierarchical MLPDFL

(2). Note that
MLPDFL

(2) is the default DeepFL model for this work.
For all studied techniques, we set the number of nodes in hidden

layer(s) to be the same as the number of input features. We globally
use the widely used learning rate of 0.001, batch size of 500, and the
default training epoch of 55. We use the default softmax loss func-
tion (from tf.nn.softmax_cross_entropy_with_logits), and
implement the pairwise loss function from scratch due to its ab-
sence in TensorFlow. Note that we tried all three ϕ functions for the
pairwise loss function, and only kept the exponential one due to its
effectiveness. Furthermore, we apply the L2-Regularization with the
widely used λ value of 0.0001, and Dropout Regularization with the
rate of 0.30 to reduce overfitting. For the baseline Learning-to-Rank
technique, we use RankSVM with linear kernel (version 1.95) from
the widely used LIBSVM [84]. We use the same LIBSVM settings as
existing Learning-to-Rank fault localization techniques [8, 29, 31].
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4.2 Measurements and Experimental Setup

Researchers have shown that statement-level fault localization may
be too fine-grained and miss useful context information [85] and
class-level fault localization is too coarse-grained to help under-
stand and fix the bug within a class [6]. Furthermore, recent ad-
vanced program repair techniques also require precise localization
of buggy methods [86, 87]. Therefore, following recent work on
fault localization [8, 33, 79, 88], we perform fault localization tech-
niques on method-level, i.e., localizing the faulty methods among
all source code methods. The following measurements are used:
Recall at Top-N: In practice, most developers usually only inspect
the top-ranked code elements during fault localization, e.g., 73.58%
developers only check Top-5 localized elements according to a
recent study [6]. Therefore, following prior work, we use Top-N
(N=1, 3, 5) to denote the number of faults with at least one faulty
element located within the first N positions, emphasizing earlier
fault detection [69, 70, 88]. Note that even when multiple faulty

elements of a fault is localized within Top-N, it is only counted once.

Mean Average Rank (MAR): For precise localization of all faulty
elements of each fault, we compute the average ranking of all the
faulty elements for each fault. MAR of each project is simply the
mean of the average ranking of all its faults.
Mean First Rank (MFR): For a fault with multiple faulty elements,
the localization of the first faulty element is critical since the rest
faulty elements may be directly localized after that. Therefore, for
each project, we use MFR to compute the mean of the first faulty
element’s rank for each fault.

Following prior fault localization work on Defects4J [8, 29],
we perform leave-one-out cross validation on the faults for each
project. To illustrate, for a project with k faulty versions in to-
tal, we separate them into two groups: one faulty version as test
data to predict its rank and other k-1 faulty versions (of the same
project) as training data to build the ranking model. Please note
each buggy version includes a large number of training instances
(i.e., methods executed by failed tests), e.g., Closure itself already has
100,000+ training instances, much larger than the famous MNIST
deep-learning dataset [89]. We also applied cross-validation/L2-
Regularization/Dropout to prevent overfitting. Besides the above
within-project scenario, we also perform cross-project learning-based
fault localization in RQ4, i.e., for localizing one faulty version of
a project, all faulty versions from other five projects are used as
training data. Our experiments were conducted on a Dell machine
with Intel Xeon CPU E5-2660 v4@2.00GHz and 220G RAM, running
Ubuntu 14.04. Our data/script are publicly available [90].

5 RESULT ANALYSIS

RQ1: DeepFL Effectiveness. To answer this RQ, we compare the
effectiveness of DeepFL (with its default MLPDFL

(2) model and
default setting) with state-of-the-art fault localization techniques,
including MULTRIC [9], FLUCCS [31], and TraPT [29]. We also
compare DeepFL with the most effective traditional SBFL andMBFL
techniques, i.e., Ochiai [20] and Metallaxis [24, 26] with the Ochiai
formula. Note that the original FLUCCS uses software age and
change information which is not always available and cannot be ap-
plied to all Defects4J subjects, so we simplify it to integrate only its
complexity metrics and spectrum-based suspiciousness values after

Table 2: Comparision with the state-of-art
Subjects Techniques Top-1 Top-3 Top-5 MFR MAR

C
h
ar
t

Ochiai 6 14 15 9.00 9.51
Me-Ochiai 7 15 17 12.68 13.31
MULTRIC 7 15 16 8.08 8.85
FLUCCS 15 19 20 3.68 4.30
TraPT 10 15 16 5.04 5.70

MLPDFL
(2) 12 20 20 3.52 4.11

La
n
g

Ochiai 24 44 50 4.63 5.01
Me-Ochiai 32 51 56 2.84 3.15
MULTRIC 23 42 49 5.53 5.85
FLUCCS 40 53 55 3.40 3.63
TraPT 42 55 58 2.89 3.18

MLPDFL
(2) 46 54 59 2.15 2.53

M
at
h

Ochiai 23 52 62 9.73 11.72
Me-Ochiai 20 51 71 7.74 9.31
MULTRIC 21 50 58 10.44 12.69
FLUCCS 48 77 83 4.64 5.66
TraPT 34 63 77 5.20 6.84

MLPDFL
(2) 63 85 91 3.72 4.84

T
im

e

Ochiai 6 11 13 15.96 18.87
Me-Ochiai 7 12 15 12.35 14.82
MULTRIC 6 13 13 24.58 27.33
FLUCCS 8 15 18 9.00 11.90
TraPT 7 13 16 11.85 13.19

MLPDFL
(2) 13 17 17 11.92 12.62

M
oc
ki
to

Ochiai 7 14 18 20.22 24.77
Me-Ochiai 9 15 21 23.47 28.38
MULTRIC 6 12 18 21.33 26.37
FLUCCS 7 19 22 14.78 18.63
TraPT 12 20 22 22.67 26.37

MLPDFL
(2) 12 19 22 11.75 13.78

C
lo
su
re

Ochiai 14 30 38 90.28 102.28
Me-Ochiai 19 47 64 23.06 27.47
MULTRIC 17 31 41 87.34 100.85
FLUCCS 42 66 77 36.61 48.61
TraPT 51 83 92 14.11 19.34

MLPDFL
(2) 67 87 96 9.20 12.14

O
ve
ra
ll

Ochiai 80 165 196 37.74 43.09
Me-Ochiai 94 191 244 14.28 16.93
MULTRIC 80 163 195 37.71 43.68
FLUCCS 160 249 275 16.53 21.53
TraPT 156 249 281 9.94 12.70

MLPDFL
(2) 213 282 305 6.63 8.27

method-level aggregation via LIBSVM. Table 2 presents the detailed
experimental results. In the table, Column 1 lists all the studied
Defects4J subjects; Column 2 lists all the compared techniques; the
remaining columns present the main measurements used in this
work. From the table, we can clearly find that DeepFL can achieve
very promising overall fault localization results than other tech-
niques. Surprisingly, DeepFL is able to localize 213 faults within
Top-1, i.e., 57/53 more Top-1 faults than TraPT and FLUCCS. Also,
the MFR and MAR values of DeepFL are the best among all studied
techniques. We think the reason to be that MLPDFL

(2) considers
the hierarchical connections between different feature groups, pro-
viding more effective fault-diagnosis information analysis.

To investigate whether the differences between DeepFL with
other state-of-the-art techniques are statistically significant, we
further perform Wilcoxon signed-rank test [91] with Bonferroni
corrections [92]. The results show that DeepFL is significantly better
than all existing techniques in terms of buggy-method rankings at
significance level of 0.05 (with p-values from 1.74e-28 to 4.63e-7
after corrections and effect-size from 0.14 to 0.33). The reason for
small effect-size is that bug-ranking has huge standard-deviations
across all bugs for all fault localization techniques (e.g.,from 1st
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Table 3: Effectiveness of different deep learning models
Techniques Top-1 Top-3 Top-5 MFR MAR

LIBSVM 185 268 299 9.28 11.85
MLP 174 244 269 23.94 28.15
MLP2 169 262 290 8.40 10.31
BiRNN 192 277 310 7.23 9.52

MLPDFL
(1) 202 280 309 6.36 8.09

MLPDFL
(2) 213 282 305 6.63 8.27

Table 4: Impacts of different dimensions of features
Techniques Top-1 Top-3 Top-5 MFR MAR

MLPDFL
(1) 202 280 309 6.36 8.09

MLPDFL
(1)-SpectrumInfor 197 269 304 7.06 9.12

MLPDFL
(1)-MutationInfor 166 245 276 14.91 17.89

MLPDFL
(1)-MetricsInfor 177 275 305 6.98 9.35

MLPDFL
(1)-TextualInfo 198 275 308 7.02 9.09

to 498th for TraPT). Furthermore, it is recommended that effect-
size should be always shown with mean difference [93], which is
actually large, e.g., from prior best 12.70 to 8.27 (35% improvement).
RQ2: Impacts of DeepFL Models and Feature Dimensions.

The first RQ has demonstrated the overall effectiveness of our
default DeepFL model. However, it is still not clear how different
DeepFL models perform for fault localization and whether we need
deep learning for fault localization at all. Therefore, we compare
our two MLPDFL models with the three traditional deep learning
models, MLP, MLP2 and BiRNN (with the default 55 epochs and
softmax loss function), as well the traditional Learning-to-Rank
technique (i.e., LIBSVM) using the same set of DeepFL features in
terms of effectiveness. From the results shown in Table 3, we have
following findings. First, as expected, LIBSVM can be more effective
than TraPT and FLUCCS due to the additional complexity-based
features and textual-similarity-based features, e.g., localizing 29/25
more faults within Top-1. Second, the traditional deep learningmod-
els can barely outperform LIBSVM, e.g., only BiRNN can slightly
outperform LIBSVM. An interesting finding is that MLP with two
hidden layers tends to perform even worse than MLP with one
hidden layer, indicating that simply including more hidden layers
cannot improve fault localization. Third, both our MLPDFL variants
can significantly outperform LIBSVM (e.g., MLPDFL

(2) localizes 28
more faults within Top-1 and achieves 28.56%/30.21% more pre-
cise MFR/MAR), demonstrating the effectiveness of considering the
hierarchical connections of different feature groups.

We further present the time costs for collecting all DeepFL fea-
tures and applying both our default DeepFL model (i.e., MLPDFL

(2))
and LIBSVM on the first version (i.e., the latest and usually the
largest version) of each studied subject in Table 5. In the table, Col-
umn 1 lists all the subjects. Columns 2 to Columns 5 list the time for
collecting the spectrum-based, mutation-based, complexity-based
and textual-similarity-based features. Columns 6 and 7 list the train-
ing and test time for DeepFL, while Columns 8 and 9 list the training
and test time for the widely used LIBSVM. From the table, we can
observe that the feature collection time is less than 40 minutes even
for the largest subject, Closure, indicating the lightweightness of
DeepFL. Note that according to prior TraPT work [29], only the
suspicious mutants (i.e., the mutants whose mutated statements are
covered by failed tests) require execution for MBFL. In our work,
we execute all the suspicious mutants using 2 threads. Also, we
can find that DeepFL always consumes more training time than
LIBSVM due to the large number of parameters involved during
the deep learning process. However, we can also observe that the

DeepFL training process costs less than 7 minutes even for the
largest Closure project. Such training cost is acceptable in practice
since the training process is usually performed offline beforehand
(e.g., before triggering the faults). Furthermore, we find that due to
the optimized matrix computation used by TensorFlow, the DeepFL
test time is extremely short, e.g., at most 0.12s for the studied sub-
jects. On the contrary, LIBSVM can consume up to 2 minutes and
25 seconds for Closure, because LIBSVM tends to dump extremely
large prediction model files [29]. Therefore, DeepFL can provide
fault localization feedback much faster than LIBSVM (e.g., up to
1200X speedup) after the training model is ready.

So far we always apply DeepFL with all four different dimensions
of features, i.e., spectrum-based, mutation-based, fault-proneness-
based and textual-similarity-based features. However, it is not clear
if all the four feature dimensions are necessary to perform DeepFL.
Therefore, we further investigate the importance of each feature
dimension for DeepFL by removing it from the entire feature set.
Please note that we use our basic MLPDFL

(1) here since our default
MLPDFL

(2) is hierarchical and hard to exclude features. Table 4
presents the overall result of different settings. From the table, we
have following findings: (1) as expected, using all four dimensions
of features can achieve the best performance; (2) the result when re-
moving mutation-based features is the worst (only 166 faults within
Top-1), showing that mutation information is essential for DeepFL;
(3) removing textual-similarity-based features achieves better result
than removing other feature dimensions, since the failed tests do
not always present useful textual debugging information. Note that
we still use the default MLPDFL

(2) to study all remaining RQs.
RQ3: Impacts of Epochs and Loss Functions. Shown in Sec-
tion 4.1, our neural network models directly use widely used hy-
perparameters. However, the best training epoch number can be
different for different problems/data. In addition, different loss func-
tions can also affect the final results. Therefore, we further study the
impact of training epoch number (i.e., less than 60) and two differ-
ent loss functions on DeepFL in this RQ. Note that we do not show
the impacts of learning rates since our results show they only affect
convergence-rate but not effectiveness. In Figure 8, each sub-plot
presents the trend of one specific measurement value when using
different number of epochs and loss functions; lines with different
colors and point types present two different loss functions, e.g., soft-
max and pairwise. From the figure, we can clearly find that softmax

is much better than pairwise after around 10 epochs in terms of all
measurement values. We also find that the loss functions softmax

and pairwise show very different trends. With the increasing epoch
number, DeepFL with softmax loss function achieves better results
and it has a slightly slow learning curve, e.g., the results are very
close after around 10 epochs in terms of Top-3/5. However, the
results of DeepFL with pairwise loss function are almost opposite
compared with softmax. The best result appears in around 5 epochs
and other results become much worse with increasing epoch num-
bers. These findings actually show that pairwise loss function can
converge to a maximum within a small number of epochs, and
may incur overfitting problem with increasing training epochs. In
this RQ, softmax loss function needs more training time to achieve
better results and its stable learning curve shows that it does not
suffer from the overfitting problem. One potential reason could be
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Figure 8: Impacts of different epochs and loss functions
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Figure 9: Impacts of different epochs for within-project, cross-project and cross-validation predictions

that pairwise only focuses on the comparison among buggy and
bug-free elements and may overlook the overall prediction correct-
ness. In summary, our default softmax loss function is most stable
and effective for DeepFL.
RQ4: Cross-project Prediction. The training data and test data
in previous RQs come from the same project. However, in practice,
the project under debugging may not have any historical bug data
available for training; even it has historical bug data, the data may
not be sufficient to train an effective model. To overcome the limi-
tations, we further extend our DeepFL across different projects to
investigate the effectiveness of cross-project fault localization. That
is, when performing fault localization on one buggy version of one
subject, we perform the training process by using all the buggy
versions of other projects. Furthermore, following prior FLUCCS
work [31], we also use 10-fold cross validation to evaluate the effec-
tiveness of DeepFL. Given the training instance data of all faults, we
randomly divide them into ten different sets. Each set is used as test
data with the other nine sets as training data. Figure 9 presents the
main experimental results of DeepFL with softmax loss function for
the cross-project, within-project and cross-validation predictions.
The results show that the best Top-1/3/5 values of cross-project and
cross-validation configurations are 207/285/308 and 206/282/310, re-
spectively, still significantly outperforming the existing techniques.
We also find that the within-project prediction performs better
than cross-project and cross-validation for Top-1 after around 45
epochs. This is as expected since in the within-project scenario the
training data from the same project tends to have similar distribu-
tion with the test data, and thus can perform better. Meanwhile,
we also observe that the best Top-N result (i.e., 207 Top-1 faults)
for cross-project prediction can be achieved much faster than the
within-project and cross-validation predictions, e.g, in 10 epochs.
Also, during all 60 epochs, the results of cross-validation don’t fluc-
tuate too much. These findings show that cross-project prediction
can converge to an optimal value in few epochs and cross-validation
keeps a stable training process. The reason is that training data of
cross-project/cross-validation prediction are collected from various
projects, providing more valuable instances for learning.
Threats to Validity. The main threat to internal validity is the
potential mistake in our feature collection and technique imple-
mentation. To reduce this threat, we collect features and implement
our techniques by utilizing state-of-the-art tools and frameworks,
such as ASM, PIT, Jhawk, Indri and TensorFlow. The main threat

Table 5: Efficiency of different techniques

Subjects
Feature collection MLPDFL

(2) LIBSVM
Cov Mutants Metrics Text Train Test Train Test

Chart-1 11.84s 1m 53s 14.40s 3m 20s 11.61s 0.05s 0.77s 0.26s
Time-1 9.05s 44.81s 12.06s 1m 38s 14.34s 0.05s 1.11s 0.28s
Lang-1 22.26s 50.99s 8.94s 1m 8s 3.68s 0.04s 0.38s 0.05s
Math-1 2m 15s 12m 5s 22.66s 2m 25s 18.17s 0.06s 2.27s 0.31s
Closure-1 45.65s 35m 20s 17.75s 2m 1s 6m 35s 0.12s 35.39s 2m 25s
Mockito-1 26.38s 4m 5s 3.68s 39s 24.56s 0.04s 1.56s 1.68s

to external validity mainly lies in the selection of the studied sub-
jects. To reduce this threat, we plan to evaluate on more real-world
projects. Also, the possible flaky tests in Defects4J [94, 95] may
impact our results. Furthermore, due to the randomness of neural
network models, the result might be different in different runs. To
reduce this potential threat, we rerun DeepFL 10 times and observe
a range from 209 to 216 in term of Top-1 value, showing the stability
of our model/configuration. The main threat to construct validity is
that the measurements used may not fully reflect real-world situa-
tions. To reduce this threat, we use Top-N, MAR and MFR metrics,
which have been widely used in previous studies [9, 29, 31, 79].

6 CONCLUSION

In this paper, we propose DeepFL, a deep learning approach for
localizing faults based on various feature dimensions. The exper-
imental study on 395 real bugs from the widely used Defects4J
benchmark shows that DeepFL can significantly outperform ex-
isting state-of-the-art learning-based fault localization techniques,
e.g., localizing 50+ more faults within Top-1 than the most effective
existing technique. The experimental results also show that the
default DeepFL with tailored MLPDFL is more effective than the
traditional Learning-to-Rank algorithm using the same features,
and can also be much faster (e.g., up to 1200X faster) for prediction.
In addition, further studies on the impacts of different feature di-
mensions reveal that all the feature dimensions studied in our paper
are useful. Furthermore, the promising result in the cross-project
scenario provides a practical guide for real-world debugging.
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